special column

Prediction method of blade machining deformation driven by mechanism⁃data hybrid

  • Lizhuo DONG ,
  • Siqi ZHANG ,
  • Zhao ZHANG ,
  • Baohai WU
Expand
  • 1.Key Laboratory of High Performance Manufacturing for Aero Engine,Ministry of Industry and Information Technology,Northwestern Polytechnical University,Xi’an 710072,China
    2.Engineering Research Center of Advanced Manufacturing Technology for Aero Engine,Ministry of Education,Northwestern Polytechnical University,Xi’an 710072,China

Received date: 2023-05-23

  Revised date: 2023-06-12

  Accepted date: 2023-08-20

  Online published: 2023-09-27

Supported by

National Key Research and Development Program(2020YFB1710400);Civil Aircraft Special Project(MJZ4-2N21);the Fundamental Research Funds for the Central Universities(D5000220135)

Abstract

As a typical thin-walled part of aviation, blade is prone to elastic deformation and machining residual stress deformation in the process of milling, which affects the machining accuracy and quality of blade. To address the deformation mechanism modeling problem of complex machining process of blade and the data-driven model prediction problem relying on limited collected samples, a mechanism-guided Sparrow optimized Extreme Learning Machine (SSA-ELM) thin-walled blade machining deformation prediction model is established. Firstly, the machining deformation mechanism model of thin-walled blade considering elastic deformation and machining residual stress deformation is established. Secondly, the Extreme Learning Machine Neural Network(ELMNN)is designed, and the Sparrow Search Algorithm (SSA) is used to optimize the parameters of the ELMNN hidden layer network. Then, the dataset of the data-driven model is constructed, and the Monte Carlo simulation is used to enhance the processed deformation data samples to establish the data-driven model. Finally, the mechanism-guided SSA-ELM is used to predict the thin-walled blade machining deformation, and the root mean square error and correlation coefficient of the machining deformation are used as the model accuracy evaluation index. The results show that the root mean square error of the mechanism guided and SSA optimized machining deformation prediction model is reduced by 77.25% and 30.5% respectively, which proves that the model has good prediction performance.

Cite this article

Lizhuo DONG , Siqi ZHANG , Zhao ZHANG , Baohai WU . Prediction method of blade machining deformation driven by mechanism⁃data hybrid[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(13) : 629037 -629037 . DOI: 10.7527/S1000-6893.2023.29037

References

1 万敏. 薄壁件周铣加工过程中表面静态误差预测关键技术研究[D]. 西安: 西北工业大学, 2005: 21-46.
  WAN M. Numerical prediction of static form errors in the peripheral milling of thin-walled workpiece[D].Xi’an: Northwestern Polytechnical University, 2005: 21-46 (in Chinese).
2 LI P F, LIU Y, GONG Y D, et al. New deformation prediction of micro thin-walled structures by iterative FEM[J]. The International Journal of Advanced Manufacturing Technology201895(5): 2027-2040.
3 YAO C F, ZHANG J Y, CUI M C, et al. Machining deformation prediction of large fan blades based on loading uneven residual stress[J]. The International Journal of Advanced Manufacturing Technology2020107(9): 4345-4356.
4 王成龙, 贺永海, 孙杰, 等. 大型薄壁筒件数字减薄中的变形自适应补偿方法[J]. 航天制造技术2021(3): 23-27.
  WANG C L, HE Y H, SUN J, et al. A deformation adaptive compensation method for digital thinning of large thin-walled cylinder parts[J]. Aerospace Manufacturing Technology2021(3): 23-27 (in Chinese).
5 LI W T, WANG L P, YU G. Chatter prediction in flank milling of thin-walled parts considering force-induced deformation[J]. Mechanical Systems and Signal Processing2022165: 108314.
6 GE G Y, XIAO Y K, FENG X B, et al. An efficient prediction method for the dynamic deformation of thin-walled parts in flank milling[J]. Computer-Aided Design2022152: 103401.
7 JAYANTI S, REN D, ERICKSON E, et al. Predictive modeling for tool deflection and part distortion of large machined components[J]. Procedia CIRP201312: 37-42.
8 廖凯, 张萧笛, 车兴飞, 等. 铝合金薄壁件加工变形的力学模型构建与分析[J]. 哈尔滨工业大学学报201850(5): 166-172.
  LIAO K, ZHANG X D, CHE X F, et al. Construction and analysis of mechanic model of deformation for Al alloy thin-walled component[J]. Journal of Harbin Institute of Technology201850(5): 166-172 (in Chinese).
9 黄晓明, 孙杰, 李剑峰. 基于刚度与应力演变机制的航空整体结构件加工变形预测理论建模[J]. 机械工程学报201753(9): 201-208.
  HUANG X M, SUN J, LI J F. Mathematical modeling of aeronautical monolithic component machining distortion based on stiffness and residual stress evolvement[J]. Journal of Mechanical Engineering201753(9): 201-208 (in Chinese).
10 LI X Y, LI L, YANG Y F, et al. Variance-based sensitivity analysis for the influence of residual stress on machining deformation[J]. Journal of Manufacturing Processes202168: 1072-1085.
11 ZHAO Z W, LI Y G, LIU C Q, et al. A subsequent-machining-deformation prediction method based on the latent field estimation using deformation force[J]. Journal of Manufacturing Systems202263: 224-237.
12 LIU F, ZHANG N S, WANG A M, et al. Deformation prediction of thin-walled parts based on BP neural network[C]∥ 2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC). Piscataway: IEEE Press, 2021: 169-172.
13 郭建烨, 郑若池. 基于改进烟花算法的薄壁件铣削加工参数优化[J]. 制造技术与机床2021(6): 70-74, 80.
  GUO J Y, ZHENG R C. Optimization of milling parameters of thin-walled parts based on improved firework algorithm[J]. Manufacturing Technology & Machine Tool2021(6): 70-74, 80 (in Chinese).
14 王峰, 徐雷, 贺云翔, 等. 基于MPSO-BP对5A06铝合金薄壁件变形预测[J]. 组合机床与自动化加工技术2019(5): 84-89.
  WANG F, XU L, HE Y X, et al. The deformation prediction of 5A06 aluminum alloy thin-wall parts based on MPSO-BP[J]. Modular Machine Tool & Automatic Manufacturing Technique2019(5): 84-89 (in Chinese).
15 张俊涛. 基于数字孪生的薄壁件铣削加工变形控制研究[D]. 哈尔滨: 哈尔滨理工大学, 2022: 40-50.
  ZHANG J T. Research on milling deformation control of thin-walled parts based on digital twin[D]. Harbin: Harbin University of Science and Technology, 2022: 40-50 (in Chinese).
16 GUO J, WANG B, HE Z X, et al. A novel method for workpiece deformation prediction by amending initial residual stress based on SVR-GA[J]. Advances in Manufacturing20219(4): 483-495.
17 翟小飞, 马仕洪, 魏伟, 等. 基于神经网络和贝叶斯优化的核电站机组功率参数自动寻优方法[J]. 自动化应用2021(3): 51-53, 57.
  ZHAI X F, MA S H, WEI W, et al. Automatic optimization method for power parameters of nuclear power plant units based on neural network and Bayesian optimization[J]. Automation Application2021(3): 51-53, 57 (in Chinese).
18 HAO X Z, LI Y G, LI M Q, et al. A part deformation control method via active pre-deformation based on online monitoring data[J]. The International Journal of Advanced Manufacturing Technology2019104(5): 2681-2692.
19 ZHAO Z W, LI Y G, LIU C Q, et al. On-line part deformation prediction based on deep learning[J]. Journal of Intelligent Manufacturing202031(3): 561-574.
20 ZHAO Z W, LI Y G, LIU C Q, et al. Predicting part deformation based on deformation force data using Physics-informed Latent Variable Model[J]. Robotics and Computer-Integrated Manufacturing202172: 102204.
21 CAO L, ZHANG X M, HUANG T, et al. Online monitoring machining errors of thin-walled workpiece: A knowledge embedded sparse Bayesian regression approach[J]. IEEE/ASME Transactions on Mechatronics201924(3): 1259-1270.
22 YAN Q H, LUO M, TANG K. Multi-axis variable depth-of-cut machining of thin-walled workpieces based on the workpiece deflection constraint[J]. Computer-Aided Design2018100: 14-29.
23 丛靖梅, 莫蓉, 吴宝海, 等. 面向性能的压气机叶片铣削加工误差分析及统计[J]. 航空制造技术201760(15): 38-44.
  CONG J M, MO R, WU B H, et al. Performance oriented machining error analysis and statistic of compressor blade[J]. Aeronautical Manufacturing Technology201760(15): 38-44 (in Chinese).
24 邓宇锋. 透平叶片变切削力加工参数研究[J]. 组合机床与自动化加工技术2015(2): 135-137, 141.
  DENG Y F. Research on parameters of the alterable cutting forces in machining turbine blade[J]. Modular Machine Tool & Automatic Manufacturing Technique2015(2): 135-137, 141 (in Chinese).
25 孙祺. 基于有限元方法的旋转叶片-机匣碰摩动力学研究[D]. 沈阳: 东北大学, 2018: 9-23.
  SUN Q. Research on rotating blade-casing rubbing induced vibration response based on finite element method[D]. Shenyang: Northeastern University, 2018: 9-23 (in Chinese).
26 潘和林. 钛合金薄壁件铣削变形的预测与控制[D]. 济南: 山东大学, 2016: 51-66.
  PAN H L. Deflection prediction and control in milling of thin-wall titanium alloy components[D]. Jinan: Shandong University, 2016: 51-66 (in Chinese).
27 XUE J K, SHEN B. A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering20208(1): 22-34.
28 李雅丽, 王淑琴, 陈倩茹, 等. 若干新型群智能优化算法的对比研究[J]. 计算机工程与应用202056(22): 1-12.
  LI Y L, WANG S Q, CHEN Q R, et al. Comparative study of several new swarm intelligence optimization algorithms[J]. Computer Engineering and Applications202056(22): 1-12 (in Chinese).
29 赵渊, 张夏菲, 周家启. 电网可靠性评估的非参数多变量核密度估计负荷模型研究[J]. 中国电机工程学报200929(31): 27-33.
  ZHAO Y, ZHANG X F, ZHOU J Q. Load modeling utilizing nonparametric and multivariate kernel density estimation in bulk power system reliability evaluation[J]. Proceedings of the CSEE200929(31): 27-33 (in Chinese).
30 袁修开, 吕震宙, 池巧君. 基于核密度估计的自适应重要抽样可靠性灵敏度分析[J]. 西北工业大学学报200826(3): 297-302.
  YUAN X K, Lü Z Z, CHI Q J. Achieving efficient estimation of reliability sensitivity of a multi-mode system without requiring knowledge of design point[J]. Journal of Northwestern Polytechnical University200826(3): 297-302 (in Chinese).
31 岳彩旭, 张俊涛, 刘献礼, 等. 薄壁件铣削过程加工变形研究进展[J]. 航空学报202243(4): 525164.
  YUE C X, ZHANG J T, LIU X L, et al. Research progress on machining deformation of thin-walled parts in milling process[J]. Acta Aeronautica et Astronautica Sinica202243(4): 525164 (in Chinese).
Outlines

/