Articles

Entropy increase characteristics of shock wave/plate laminar boundary layer interaction

  • Jiahui SONG ,
  • Aiguo XU ,
  • Long MIAO ,
  • Yugan LIAO ,
  • Fuwen LIANG ,
  • Feng TIAN ,
  • Mingqing NIE ,
  • Ningfei WANG
Expand
  • 1.School of Aerospace Engineering,Beijing Institute of Technology,Beijing  100081,China
    2.National Key Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing  100088,China
    3.National Key Laboratory of Shock Wave and Detonation Physics,Mianyang  621900,China
    4.State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing  100081,China
    5.HEDPS,Center for Applied Physics and Technology,College of Engineering,Peking University,Beijing  100871,China
    6.Chongqing Innovation Center,Beijing Institute of Technology,Chongqing  404100,China

Received date: 2023-02-01

  Revised date: 2023-03-01

  Accepted date: 2023-07-23

  Online published: 2023-08-11

Supported by

National Natural Science Foundation of China(12172061);Foundation of National Key Laboratory of Shock Wave and Detonation Physics;Foundation of National Key Laboratory of Computational Physics;The Opening Project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology)(KFJJ23-02M);National Key Research and Development Program(2020YFC2201100);China Postdoctoral Science Foundation(2021M690392);Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology(LabASP-2021-04)

Abstract

There exist complex shock wave/boundary layer interaction phenomena in supersonic flow. The main sources of aerodynamic drag in scramjet engines are “friction drag” caused by boundary layer and “wave drag” caused by shock wave, both of which are directly related to entropy increase, so entropy increase is the key parameter to evaluate the aerodynamic drag. Discrete Boltzmann Modeling and Analysis Method (DBM) based on non-equilibrium statistical physics is used to simulate high mach number regular reflection and shock wave/laminar boundary layer interaction problem. With the help of high-order non-conserved kinetic moments, DBM can easily capture thermodynamic non-equilibrium effects such as viscosity and heat conduction, and quantify the entropy production rate caused by them. The results show that for regular reflection, the non-equilibrium intensity of the reflected shock wave is stronger than that of the incident shock wave. For shock wave/laminar boundary layer interaction, entropy production rate caused by viscosity is dominant in shock wave, and entropy production rate caused by heat conduction is dominant in boundary layer. The intensity of the two entropy production rates increases with the increase of Mach number. The research results can provide theoretical guidance for evaluating the flow quality in the inlet.

Cite this article

Jiahui SONG , Aiguo XU , Long MIAO , Yugan LIAO , Fuwen LIANG , Feng TIAN , Mingqing NIE , Ningfei WANG . Entropy increase characteristics of shock wave/plate laminar boundary layer interaction[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(21) : 528520 -528520 . DOI: 10.7527/S1000-6893.2023.28520

References

1 徐旭, 陈兵, 徐大军. 冲压发动机原理及技术[M]. 北京: 北京航空航天大学出版社, 2014.
  XU X, CHEN B, XU D J. Principle and technology of ramjet engine[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2014 (in Chinese).
2 黄伟, 罗世彬, 王振国. 临近空间高超声速飞行器关键技术及展望[J]. 宇航学报201031(5): 1259-1265.
  HUANG W, LUO S B, WANG Z G. Key techniques and prospect of near-space hypersonic vehicle[J]. Journal of Astronautics201031(5): 1259-1265 (in Chinese).
3 叶友达, 张涵信, 蒋勤学, 等. 近空间高超声速飞行器气动特性研究的若干关键问题[J]. 力学学报201850(6): 1292-1310.
  YE Y D, ZHANG H X, JIANG Q X, et al. Some key problems in the study of aerodynamic characteristics of near-space hypersonic vehicles[J]. Chinese Journal of Theoretical and Applied Mechanics201850(6): 1292-1310 (in Chinese).
4 孟宇鹏, 杨晖, 满延进. 高超声速进气道飞行器一体化设计技术的发展[J]. 气体物理20216(4):66-83.
  MENG Y P, YANG H, MAN Y J. Development of hypersonic Inlet-Vehicle integrative design technology[J]. Physics of Gases20216(4):66-83 (in Chinese).
5 于达仁, 常军涛, 崔涛, 等. 超燃冲压发动机控制方法[J]. 推进技术201031(6): 764-772.
  YU D R, CHANG J T, CUI T, et al. Control method of scramjet engines[J]. Journal of Propulsion Technology201031(6): 764-772 (in Chinese).
6 骆红朱. 复杂入口条件下超燃冲压发动机隔离段气动性能研究[D]. 南京: 南京航空航天大学, 2018.
  LUO H Z. Flow performance study of scramjet isolator at distorted incoming flow conditions[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese).
7 HUANG W, WU H, YANG Y G, et al. Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows[J]. Acta Astronautica2020174: 103-122.
8 黄河峡. 背景激波系干扰下隔离段内激波串特性及其控制研究[D]. 南京: 南京航空航天大学, 2018.
  HUANG H X. Behaviors of shock train in isolator with background shocks and its control [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese).
9 GUO X, SI T, ZHAI Z G, et al. Large-amplitude effects on interface perturbation growth in Richtmyer-Meshkov flows with reshock[J]. Physics of Fluids202234(8): 082118.
10 WANG H, WANG H, ZHAI Z G, et al. Effects of obstacles on shock-induced perturbation growth[J]. Physics of Fluids202234(8): 086112.
11 WANG W Z, WU Y, RONG M Z, et al. Theoretical computation studies for transport properties of air plasmas[J]. Acta Physica Sinica201261(10): 105201.
12 袁军娅, 任翔, 蔡国飙, 等. 双锥/双楔流动中的高温气体效应仿真模拟[J]. 气体物理20227(4): 10-18.
  YUAN J Y, REN X, CAI G B, et al. Simulation of high temperature gas effects in high enthalpy double cone/wedge flows[J]. Physics of Gases20227(4): 10-18 (in Chinese).
13 李祝飞. 高超声速进气道起动特性机理研究[D]. 合肥: 中国科学技术大学, 2013.
  LI Z F. An investigating on starting characteristics of hypersonic inlets[D]. Hefei: University of Science and Technology of China, 2013 (in Chinese).
14 CHANG J T, LI N, XU K J, et al. Recent research progress on unstart mechanism, detection and control of hypersonic inlet[J]. Progress in Aerospace Sciences201789: 1-22.
15 李楠. 超燃冲压发动机内激波串运动不稳定及控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
  LI N. Investigation of the shock train instability and control method in Scramjet[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese).
16 BABINSKY H, HARVEY J. Shock wave-boundary-layer interactions[M]. Cambridge: Cambridge University Press, 2011.
17 GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences201572: 80-99.
18 HADJADJ A, PERROT Y, VERMA S. Numerical study of shock/boundary layer interaction in supersonic overexpanded nozzles[J]. Aerospace Science and Technology201542: 158-168.
19 BAO Y, QIU R F, ZHOU K, et al. Study of shock wave/boundary layer interaction from the perspective of nonequilibrium effects[J]. Physics of Fluids202234(4): 046109.
20 NEUENHAHN T, OLIVIER H. Influence of the wall temperature and the entropy layer effects on double wedge shock boundary layer interactions[C]∥ 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006: 8136.
21 BOROVOY V Y, EGOROV I V, SKURATOV A S, et al. Two-dimensional shock-wave/boundary-layer interaction in the presence of entropy layer[J]. AIAA Journal201351(1): 80-93.
22 DéLERY J, DUSSAUGE J P. Some physical aspects of shock wave/boundary layer interactions[J]. Shock Waves200919(6): 453-468.
23 MAHESH K, LELE S K, MOIN P. The influence of entropy fluctuations on the interaction of turbulence with a shock wave[J]. Journal of Fluid Mechanics1997334: 353-379.
24 许爱国, 张玉东. 复杂介质动理学[M]. 北京: 科学出版社, 2022.
  XU A G, ZHANG Y D. Complex media kinetics[M]. Beijing: Science Press, 2022 (in Chinese).
25 GAN Y B, XU A G, ZHANG G C, et al. Discrete Boltzmann trans-scale modeling of high-speed compressible flows[J]. Physical Review: E201897(5): 053312.
26 QIU R F, ZHOU T, BAO Y, et al. Mesoscopic kinetic approach for studying nonequilibrium hydrodynamic and thermodynamic effects of shock wave, contact discontinuity, and rarefaction wave in the unsteady shock tube[J]. Physical Review: E2021103(5): 053113.
27 LIN C D, SU X L, ZHANG Y D. Hydrodynamic and thermodynamic nonequilibrium effects around shock waves: Based on a discrete Boltzmann method[J]. Entropy202022(12): 1397.
28 ZHANG Y D, XU A G, ZHANG G C, et al. Kinetic modeling of detonation and effects of negative temperature coefficient[J]. Combustion and Flame2016173: 483-492.
29 ZHANG Y D, XU A G, ZHANG G C, et al. Entropy production in thermal phase separation: a kinetic-theory approach[J]. Soft Matter201915(10): 2245-2259.
30 陈式刚. 非平衡统计力学[M]. 北京: 科学出版社, 2010.
  CHEN S G. Non-equilibrium statistical mechanics[M]. Beijing: Science Press, 2010 (in Chinese).
31 沈青. 稀薄气体动力学[M]. 北京: 国防工业出版社, 2003.
  SHEN Q. Rarefied gas dynamics[M]. Beijing: National Defense Industry Press, 2003 (in Chinese).
32 LI Z H, PENG A P, ZHANG H X, et al. Rarefied gas flow simulations using high-order gas-kinetic unified algorithms for Boltzmann model equations[J]. Progress in Aerospace Sciences201574: 81-113.
33 刘畅, 徐昆. 离散时空直接建模思想及其在模拟多尺度输运中的应用[J]. 空气动力学学报202038(2):197-216.
  LIU C, XU K. Direct modeling methodology and its applications in multiscale transport process[J]. Acta Aerodynamica Sinica202038(2):197-216 (in Chinese).
34 陈伟芳, 赵文文. 稀薄气体动力学矩方法及数值模拟[M]. 北京: 科学出版社, 2017.
  CHEN W F, ZHAO W W. Moment equations and numerical methods for rarefied gas flows [M]. Beijing: Science Press, 2017 (in Chinese).
35 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2009.
  HE Y L, WANG Y, LI Q. Lattice Boltzmann method: Theory and applications[M]. Beijing: Science Press, 2009 (in Chinese).
36 XU A G, ZHANG G C, ZHANG Y D. Discrete Boltzmann modeling of compressible flows[M]∥ Kinetic theory. Rijeka: InTech, 2018.
37 许爱国, 单奕铭, 陈锋, 等. 燃烧多相流的介尺度动理学建模研究进展[J]. 航空学报202142(12): 52-68
  XU A G, SHAN Y M, CHEN F, et al. Progress of mesoscale modeling and investigation of combustion multiphase flow[J]. Acta Aeronautica et Astronautica Sinica202142(12): 52-68 (in Chinese).
38 许爱国, 陈杰, 宋家辉, 等. 多相流系统的离散玻尔兹曼研究进展[J]. 空气动力学学报202139(3):138-169.
  XU A G, CHEN J, SONG J H, et al. Progress of discrete Boltzmann study on multiphase complex flows[J]. Acta Aerodynamica Sinica202139(3): 138-169 (in Chinese).
39 许爱国, 宋家辉, 陈锋, 等. 基于相空间的复杂物理场建模与分析方法[J]. 计算物理202138(6): 631-660.
  XU A G, SONG J H, CHEN F, et al. Modeling and analysis methods for complex fields based on phase space[J]. Chinese Journal of Computational Physics202138(6): 631-660 (in Chinese).
40 GAN Y B, XU A G, LAI H L, et al. Discrete Boltzmann multi-scale modelling of non-equilibrium multiphase flows[J]. Journal of Fluid Mechanics2022951: A8.
41 ZHANG D J, XU A G, ZHANG Y D, et al. Discrete Boltzmann modeling of high-speed compressible flows with various depths of non-equilibrium[J]. Physics of Fluids202234(8): 086104.
42 ZHANG Y D, XU A G, ZHANG G C, et al. Discrete Boltzmann method for non-equilibrium flows: Based on Shakhov model[J]. Computer Physics Communications2019238: 50-65.
43 ZHANG Y D, XU A G, CHEN F, et al. Non-equilibrium characteristics of mass and heat transfers in the slip flow[J]. AIP Advances202212(3): 035347.
44 XU A G, ZHANG G C, GAN Y B, et al. Lattice Boltzmann modeling and simulation of compressible flows[J]. Frontiers of Physics20127(5): 582-600.
45 ZHANG Y D, XU A G, ZHANG G C, et al. Discrete Boltzmann method with Maxwell-type boundary condition for slip flow[J]. Communications in Theoretical Physics201869(1): 77.
46 BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems[J]. Physical Review195494(3): 511-525.
47 WIETING A R, HOLDEN M S. Experimental shock-wave interference heating on a cylinder at Mach 6 and 8[J]. AIAA Journal198927(11): 1557-1565.
Outlines

/