special column

Guidance, navigation and control for airborne docking of autonomous aerial refueling

  • Xin DU ,
  • Zhe ZHU ,
  • Fangfang HU ,
  • Jiangtao HUANG ,
  • Gang LIU ,
  • Sheng ZHANG ,
  • Enguang SHAN ,
  • Jigang TANG
Expand
  • Aerospace Technology Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China
E-mail: hjtcyfx@163.com

Received date: 2023-04-06

  Revised date: 2023-05-05

  Accepted date: 2023-06-17

  Online published: 2023-07-07

Abstract

Autonomous aerial refueling technology can significantly improve the endurance and flight duration of unmanned aerial vehicles, and has great significance in both military and civilian applications. Due to factors such as aerodynamic interference of aircraft formation, model uncertainty, head wave effect, and gust disturbance, the docking segment of aerial unmanned refueling is the most precise and difficult stage to control, making navigation, guidance, and control technology the current research hotspots and challenges. In this paper, we study the robust anti-interference navigation, guidance, and control technology of the autonomous hose refueling docking segment in the unmanned-to-unmanned aerial refueling scenario, and conduct flight tests to confirm its effectiveness. First, to prevent oscillations during height control when the receiving aircraft is accelerating to dock, a longitudinal guidance law is designed using the total energy method to achieve coordinated control of the height and speed during the final docking stage. Second, to improve the docking control accuracy in gusty conditions, lateral guidance laws are designed based on the L1 nonlinear guidance, which considers the trajectory tracking characteristics of the tanker and receiver in different flight stages. Inner-loop attitude control laws are designed using robust servo methods, and integral terms are introduced into the angular velocity control loop to enhance system robustness and suppress the influence of external disturbances. Then, a drogue identification and positioning algorithm is developed based on the YOLOV4 single-stage deep learning object detection algorithm, which is trained and sampled under complex lighting and foggy conditions to improve the robustness of the visual system. The extended Kal-man filter algorithm is used to fuse image positioning information with RTK positioning information for relative navigation. Finally, a flight test plan for unmanned aerial refueling docking simulation is designed to maximize the success rate of docking while reducing safety risks. The flight test verifies the effectiveness of the anti-interference navigation, guidance, and control scheme proposed in this paper.

Cite this article

Xin DU , Zhe ZHU , Fangfang HU , Jiangtao HUANG , Gang LIU , Sheng ZHANG , Enguang SHAN , Jigang TANG . Guidance, navigation and control for airborne docking of autonomous aerial refueling[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(20) : 628827 -628827 . DOI: 10.7527/S1000-6893.2023.28827

References

1 全权, 魏子博, 高俊, 等. 软管式自主空中加油对接阶段中的建模与控制综述[J]. 航空学报201435(9): 2390-2410.
  QUAN Q, WEI Z B, GAO J, et al. A survey on modeling and control problems for probe and drogue autonomous aerial refueling at docking stage[J]. Acta Aeronautica et Astronautica Sinica201435(9): 2390-2410 (in Chinese).
2 DANIEL B W. Guidance, navigation and control for UAV close formation flight and airborne docking[D]. Sydney: The University of Sydney, 2015.
3 陈冠宇. 无人机空中加油对接引导技术[D]. 南京: 南京航空航天大学, 2019.
  CHEN G Y. Docking guidance technology for aerial refueling of unmanned aerial vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese).
4 DIBLEY R, ALLEN M, NABAA N. Autonomous airborne refueling demonstration phase I flight-test results: AIAA-2007-6639[R]. Reston: AIAA, 2007.
5 HANSEN J, MURRAY J, CAMPOS N. The NASA Dryden AAR project: A flight test approach to an aerial refueling system: AIAA-2004-4939[R]. Reston: AIAA, 2004.
6 MCMORROW S E, SHERRARD R. Mission information and test systems summary of accomplishments: NASA/TM-2013-216043.2011[R]. Washington, D.C.: NASA, 2013.
7 SHULGIN D. X-47B unmanned aircraft demonstrates the first autonomous aerial refueling[EB/OL]. (2015-04-23)[2015-04-26]. .
8 李大伟, 王宏伦. 自动空中加油阶段加油机尾涡流场建模与仿真[J]. 北京航空航天大学学报201036(7): 776-780, 797.
  LI D W, WANG H L. Wake vortex effect modeling and simulation in automated aerial refueling[J]. Journal of Beijing University of Aeronautics and Astronautics201036(7): 776-780, 797 (in Chinese).
9 胡孟权, 柳平, 聂鑫, 等. 大气紊流对空中加油软管锥套运动的影响[J]. 飞行力学201028(5): 20-23.
  HU M Q, LIU P, NIE X, et al. Influence of air turbulence on the movement of hose-drogue[J]. Flight Dynamics201028(5): 20-23 (in Chinese).
10 程钊, 于方圆. 受油机扰动特性的建模与仿真[J]. 兵工自动化201332(10): 8-11.
  CHENG Z, YU F Y. Modeling and simulation of receiver aircraft disturbance characteristics[J]. Ordnance Industry Automation201332(10): 8-11 (in Chinese).
11 陈乐乐. 软式空中加油气动相容性及动态特性研究[D]. 南京: 南京航空航天大学, 2017.
  CHEN L L. Research on aerodynamic compatibility and dynamic characteristics of hose-drogue aerial refuling system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese).
12 徐坚, 张晓非. 软式空中加油头波效应建模与仿真[J]. 飞行力学201937(5): 40-44.
  XU J, ZHANG X F. Dynamic modeling and simulation of bow wave effect in hose-drogue aerial refueling system[J]. Flight Dynamics201937(5): 40-44 (in Chinese).
13 王健, 董新民, 徐跃鉴, 等. 软式空中加油受油机头波数值仿真分析[J]. 飞行力学201634(1): 54-58.
  WANG J, DONG X M, XU Y J, et al. Simulation and analysis of the bow wave effect of the receiver in hose-drogue aerial refueling[J]. Flight Dynamics201634(1): 54-58 (in Chinese).
14 刘海洲. 考虑头波效应影响的自主空中加油对接技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
  LIU H Z. Reseach on autonomous aerial refueling docking under bow wave[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese).
15 张博连. 无人机自主空中加油对接控制技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
  ZHANG B L. Docking control method for autonomous aerial refueling for unmanned aerial vehicles[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese).
16 宋海军. 无人机空中加油会合阶段制导控制研究[D]. 南京: 南京航空航天大学, 2014.
  SONG H J. Research on guidance and control technology of the rendezvous for autonomous aerial refueling of unmanned aerial vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese).
17 吴腾飞. 无人机软式自主空中加油视觉导航技术研究[D]. 南京: 南京航空航天大学, 2015.
  WU T F. Vision-based navigation for UAV probe and drogue autonomous aerial refueling[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015 (in Chinese).
18 慕春棣, 李波睿. 基于视觉的自动空中加油技术[J]. 清华大学学报(自然科学版)201252(5): 670-676, 681.
  MU C D, LI B R. Vision-based autonomous aerial refueling[J]. Journal of Tsinghua University (Science and Technology)201252(5): 670-676, 681 (in Chinese).
19 解洪文, 王宏伦. 基于双目视觉的自动空中加油近距导航方法[J]. 北京航空航天大学学报201137(2): 206-209.
  XIE H W, WANG H L. Binocular vision-based short-range navigation method for autonomous aerial refueling[J]. Journal of Beijing University of Aeronautics and Astronautics201137(2): 206-209 (in Chinese).
20 郭军, 董新民, 徐跃鉴, 等. 无人机空中加油自主会合控制器设计[J]. 控制与决策201025(4): 567-571.
  GUO J, DONG X M, XU Y J, et al. Design of UAV autonomous controller for rendezvous in aerial refueling[J]. Control and Decision201025(4): 567-571 (in Chinese).
21 盖文东, 王宏伦, 李大伟. 基于自适应动态逆的自动空中加油轨迹跟踪[J]. 北京航空航天大学学报201238(5): 585-590.
  GAI W D, WANG H L, LI D W. Trajectory tracking for automated aerial refueling based on adaptive dynamic inversion[J]. Journal of Beijing University of Aeronautics and Astronautics201238(5): 585-590 (in Chinese).
22 KHANSARI-ZADEH S M, SAGHAFI F. Vision-based navigation in autonomous close proximity operations using neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems201147(2): 864-883.
23 HOWARD J M, VETH M J. Image aided relative navigation for air vehicles using a passive, statistical predictive rendering approach[C]∥ 24th International Technical Meeting of the Satellite Division of the Institute of Navigation 2011. Manassas: ION, 2011: 3546-3556.
24 DOEBBLER J, VALASEK J, MONDA M, et al. Boom and receptacle autonomous air refueling using a visual pressure snake optical sensor: AIAA-2006-6504[R]. Reston: AIAA, 2006.
25 MAMMARELLA M, CAMPA G, NAPOLITANO M R, et al. Machine vision/GPS integration using EKF for the UAV aerial refueling problem[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)200838(6): 791-801.
26 MAMMARELLA M, CAMPA G, NAPOLITANO M R, et al. Comparison of point matching algorithms for the UAV aerial refueling problem[J]. Machine Vision and Applications201021(3): 241-251.
27 MARTINEZ C, RICHARDSON T, CAMPOY P. Towards autonomous air-to-air refueling for UAVs using visual information[C]∥ 2013 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2013: 26-31.
28 NICHOLS J W, SUN L, BEARD R W, et al. Aerial rendezvous of small unmanned aircraft using a passive towed cable system[J]. Journal of Guidance, Control, and Dynamics201437(4): 1131-1142.
29 许勇, 颜鸿涛, 贾涛, 等. 固定翼集群无人机空中模拟对接技术[J]. 航空学报202344(5): 326539.
  XU Y, YAN H T, JIA T, et al. Aerial simulation docking technology of fixed-wing clustering UAVs[J]. Acta Aeronautica et Astronautica Sinica202344(5): 326539 (in Chinese).
30 CAMPA G, FRAVOLINI M L, FICOLA A, et al. Autonomous aerial refueling for UAVs using a combined GPS-machine vision guidance: AIAA-2004-5350[R]. Reston: AIAA, 2004.
31 DARLING M B. Autonomous close formation flight of small UAVS using vision-based localization[D]. Pasadena: California Polytechnic State University, 2014.
32 FOSBURY A M, CRASSIDIS J L. Relative navigation of air vehicles[J]. Journal of Guidance, Control, and Dynamics200831(4): 824-834.
33 LUGO J J, MASSELLI A, ZELL A. Following a quadrotor with another quadrotor using onboard vision[C]∥ 2013 European Conference on Mobile Robots. Piscataway: IEEE Press, 2013: 5756-5762.
34 VALASEK J, GUNNAM K, KIMMETT J, et al. Vision-based sensor and navigation system for autonomous air refueling[J]. Journal of Guidance, Control, and Dynamics200528(5): 979-989.
35 TANDALE M D, BOWERS R, VALASEK J. Trajectory tracking controller for vision-based probe and drogue autonomous aerial refueling[J]. Journal of Guidance, Control, and Dynamics200629(4): 846-857.
36 GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥ 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 580-587.
37 REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence201739(6): 1137-1149.
38 LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]∥ European Conference on Computer Vision. Cham: Springer Cham, 2016: 21-37.
39 REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 779-788.
40 WANG Y X, WANG H L, LIU B L, et al. A visual navigation framework for the aerial recovery of UAVs[J]. IEEE Transactions on Instrumentation and Measurement202170: 1-13.
41 DOGAN A, BLAKE W, HAAG C. Bow wave effect in aerial refueling: Computational analysis and modeling[J]. Journal of Aircraft201350(6): 1856-1868.
42 BHANDARI U, THOMAS P, BULLOCK S, et al. Bow wave effect in probe and drogue aerial refuelling: AIAA-2013-4695[R]. Reston: AIAA, 2013
43 LEWIS T A. Flight data analysis and simulation of wind effects during aerial refueling[D]. Arlington: The University of Texas at Arlington, 2008.
44 MAHBOUBI Z, KOLTER Z, WANG T, et al. Camera based localization for autonomous UAV formation flight: AIAA-2011-1658[R]. Reston: AIAA, 2011.
45 PARK S, DEYST J, HOW J. A new nonlinear guidance logic for trajectory tracking: AIAA-2004-4900[R]. Reston: AIAA, 2004.
46 WATANABE Y, JOHNSON E, CALISE A. Stochastically optimized monocular vision-based guidance design: AIAA-2007-6865[R]. Reston: AIAA, 2007.
47 FRAVOLINI M L, FICOLA A, CAMPA G, et al. Modeling and control issues for autonomous aerial refueling for UAVs using a probe-drogue refueling system[J]. Aerospace Science and Technology20048(7): 611-618.
48 REHAN M, KHAN Z H. Robust formation control for aerial refueling[C]∥ 2012 International Conference of Robotics and Artificial Intelligence. Piscataway: IEEE Press, 2012: 11-18.
49 王宏伦, 杜熠, 盖文东. 无人机自动空中加油精确对接控制[J]. 北京航空航天大学学报201137(7): 822-826.
  WANG H L, DU Y, GAI W D. Precise docking control in unmanned aircraft vehicle automated aerial refueling[J]. Journal of Beijing University of Aeronautics and Astronautics201137(7): 822-826 (in Chinese).
50 KIMMETT J, VALASEK J, JUNKINS J. Autonomous aerial refueling utilizing: A vision based navigation system: AIAA-2002-4469[R]. Reston: AIAA, 2002.
51 李大伟, 王宏伦. 无人机自动空中加油飞行控制技术[J]. 系统仿真学报201022(S1): 126-130.
  LI D W, WANG H L. UAV Flight control in automated aerial refueling[J]. Journal of System Simulation201022(S1): 126-130 (in Chinese).
52 REN J R, DAI X H, QUAN Q A, et al. Reliable docking control scheme for probe?drogue refueling[J]. Journal of Guidance, Control, and Dynamics201942(11): 2511-2520.
53 COOPER J R, ROTHHAAR P M. Dynamics and control of in-flight wingtip docking[J]. Journal of Guidance, Control, and Dynamics: A Publication of the American Institute of Aeronautics and Astronautics Devoted to the Technology of Dynamics and Control201841(11): 2327-2337.
54 段镇. 无人机鲁棒伺服LQR飞行控制律设计[J]. 计算机测量与控制201523(8): 2713-2715.
  DUAN Z. Robust servo LQR flight control law design of UAV[J]. Computer Measurement & Control201523(8): 2713-2715 (in Chinese).
55 LAVRETSKY E, WISE K A. Robust and adaptive control with output feedback[M]∥ Robust and Adaptive Control. London: Springer London, 2013: 417-449.
56 廖伟. 扑翼飞行器自主控制技术研究[D]. 杭州: 浙江大学, 2020.
  LIAO W. Research of autonomous control technology for the flapping-wing aircraft[D]. Hangzhou: Zhejiang University, 2020 (in Chinese).
Outlines

/