ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Disturbance region update method with multigrid for compressible flows
Received date: 2022-06-20
Revised date: 2022-08-17
Accepted date: 2022-10-21
Online published: 2023-06-15
Supported by
China Postdoctoral Science Foundation(2020M680286);National Natural Science Foundation of China(U20B2006);National Key Project of China(GJXM92579)
To accelerate the numerical simulation of compressible flows, a new acceleration methodology, named the Disturbance Region Update Method with Multigrid (DRUM-M), is presented, which integrates the multigrid technique into the Disturbance Region Update Method (DRUM) proposed by the authors. The principles and algorithms of updating the Dynamic Computational Domains (DCDs) between the fine and the coarse grids are proposed. Improvements on certain operations, such as the initialization and the extension of the advective DCD, are made based on the characteristics of the multigrid technique. Besides, a new strategy of the coarse grid generation is established for structured grids, capable of eliminating the cell-number restriction of existing methods. Numerical test cases demonstrate that, firstly, DRUM-M can decrease the computational effort per iteration on both the fine and the coarse grids, as well as the total number of iterations; secondly, benefiting from employing DCDs on both the fine and the coarse grids, there are acceleration synergies between the multigrid technique and DRUM; thirdly, compared with the conventional multigrid technique at the same conditions, DRUM-M could achieve a time reduction of 57.9%.
Shuyao HU , Chongwen JIANG , Chun-Hian LEE . Disturbance region update method with multigrid for compressible flows[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(11) : 127649 -127649 . DOI: 10.7527/S1000-6893.2022.27649
1 | 马率, 邱名, 王建涛, 等. CFD在螺旋桨飞机滑流影响研究中的应用[J]. 航空学报, 2019, 40(4): 622365. |
MA S, QIU M, WANG J T, et al. Application of CFD in slipstream effect on propeller aircraft research[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4): 622365 (in Chinese). | |
2 | BLAZEK J. Computational fluid dynamics: Principles and applications[M]. Amsterdam: Elsevier, 2015. |
3 | 刘超群. 多重网格法及其在计算流体力学中的应用[M]. 北京: 清华大学出版社, 1995. |
LIU C Q. Multi-grid method and its application in computational fluid dynamics[M]. Beijing: Tsinghua University Press, 1995 (in Chinese). | |
4 | NI R H. A multiple-grid scheme for solving the Euler equations[J]. AIAA Journal, 1982, 20(11): 1565-1571. |
5 | JAMESON A, YOON S. Multigrid solution of the Euler equations using implicit schemes[J]. AIAA Journal, 1986, 24(11): 1737-1743. |
6 | YADLIN Y, CAUGHEY D A. Block multigrid implicit solution of the Euler equations of compressible fluid flow[J]. AIAA Journal, 1991, 29(5): 712-719. |
7 | DADONE A, DEPALMA P. An adaptive multigrid upwind solver for compressible viscous flows[C]∥ Fluid Dynamics Conference. Reston: AIAA, 1995. |
8 | GREENE F A. Application of the multigrid solution technique to hypersonic entry vehicles[J]. Journal of Spacecraft and Rockets, 1994, 31(5): 744-750. |
9 | GERLINGER P, STOLL P, BRüGGEMANN D. An implicit multigrid method for the simulation of chemically reacting flows[J]. Journal of Computational Physics, 1998, 146(1): 322-345. |
10 | 肖中云, 江雄, 牟斌, 等. 并行环境下外挂物动态分离过程的数值模拟[J]. 航空学报, 2010, 31(8): 1509-1516. |
XIAO Z Y, JIANG X, MOU B, et al. Numerical simulation of dynamic process of store separation in parallel environment[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1509-1516 (in Chinese). | |
11 | 刘安, 琚亚平, 张楚华. 多块多重网格法及其跨声速转子内流并行模拟[J]. 航空动力学报, 2018, 33(7): 1705-1712. |
LIU A, JU Y P, ZHANG C H. Multi-block multi-level grid method and parallel simulation of internal flows of transonic rotor[J]. Journal of Aerospace Power, 2018, 33(7): 1705-1712 (in Chinese). | |
12 | 薄靖龙, 刘耀峰, 曹宁. 多重网格技术在侧喷干扰流场模拟中的应用[J]. 弹箭与制导学报, 2015, 35(3): 143-147. |
BO J L, LIU Y F, CAO N. Application of multigrid method in lateral jet interaction flowfield simulation[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(3): 143-147 (in Chinese). | |
13 | YOON S, CHANG L, KWAK D. Multigrid convergence of an implicit symmetric relaxation scheme[C]∥11th Computational Fluid Dynamics Conference. Reston: AIAA, 1993. |
14 | HU S Y, JIANG C W, GAO Z X, et al. Disturbance region update method for steady compressible flows[J]. Computer Physics Communications, 2018, 229: 68-86. |
15 | HU S Y, JIANG C W, GAO Z X, et al. Zonal disturbance region update method for steady compressible viscous flows[J]. Computer Physics Communications, 2019, 244: 97-116. |
16 | HU S Y, JIANG C W, GAO Z X, et al. An acceleration methodology based on disturbance region update method for steady compressible flows [C]∥ 32nd Congress of the International Council of the Aeronautical Sciences. 2021. |
17 | HU S Y, JIANG C W, GAO Z X, et al. Spatial parallel disturbance region update method with OpenMP for steady compressible flows[J]. Computer Physics Communications, 2022, 276: 108359. |
18 | BLAZEK J. A multigrid LU-SSOR scheme for the solution of hypersonic flow problems[C]∥ 32nd Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1994. |
19 | YOON S, JAMESON A. Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9): 1025-1026. |
20 | ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1997, 135(2): 250-258. |
21 | DECK S, DUVEAU P, D'ESPINEY P, et al. Development and application of Spalart-Allmaras one equation turbulence model to three-dimensional supersonic complex configurations[J]. Aerospace Science and Technology, 2002, 6(3): 171-183. |
22 | DEZEEUW D L, POWELL K G. An adaptively-refined Cartesian mesh solver for the Euler equations[C]∥ 10th Computational Fluid Dynamics Conference. Reston: AIAA, 1991. |
23 | YOSHIHARA H, N?RSTRUD H, BOERSTOEL J W, et al. Test cases for inviscid flow field methods: AGARD-AR-211[R]. Pairs: AGARD, 1985. |
24 | COOK P H, MCDONALD M A, FIRMIN M C P. Aerofoil RAE 2822 – Pressure distributions and boundary layer and wake measurements: AGARD-AR-38[R]. Pairs: AGARD, 1979. |
/
〈 |
|
〉 |