Fluid Mechanics and Vehicle Conceptual Design

High-order numerical methods for engineering turbulence simulation

  • Shengye WANG ,
  • Xiaogang DENG ,
  • Yidao DONG ,
  • Dongfang WANG ,
  • Jiahong CAI
Expand
  • 1.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha  410073,China
    2.Academy of Military Sciences,Beijing  100083,China

Received date: 2023-03-21

  Revised date: 2023-04-13

  Accepted date: 2023-04-23

  Online published: 2023-04-28

Supported by

National Natural Science Foundation of China(92252101);Young Elite Scientists Sponsorship Program by CAST(2022QNRC001);National Key Project(GJXM92579)

Abstract

The high-order numerical method has been a popular frontier topic in computational fluid dynamics. From the embryonic stage in the 1980s to the practical level today, efforts have been made for more than 30 years. In this process, the calculation of turbulent flows dominated by RANS (Reynolds-Average Navier Stokes) or Hybrid RANS/LES (Large Eddy Simulation)equations is a key problem in the engineering application of high-order numerical methods. The numerical stability, convergence efficiency, mesh influence and other aspects involved in RANS are more serious than those in the pure Navier-Stokes or Euler equations. Moreover, there is an urgent need for accurate simulation of turbulence separation, transition, shock/turbulence interference, turbulent combustion, etc. in the fields of aerospace and energy and power. It promotes the continuous emergence of new turbulence models, bringing forward challenges for the adaptability of high-order methods, the compatibility of CFD software, and their verification and validation. This paper summarizes the development of high-order methods for engineering turbulence simulations. The key points include high-order spatial schemes and temporal implicit positive-preserving schemes for turbulence equation, evolution of turbulence models in the framework of the high-order method, geometric/mesh problems in engineering simulations, matching of high-order schemes and turbulence models in scale-resolution simulation as well as methods of verification and validation. Finally, the challenges and future development are prospected.

Cite this article

Shengye WANG , Xiaogang DENG , Yidao DONG , Dongfang WANG , Jiahong CAI . High-order numerical methods for engineering turbulence simulation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(15) : 528728 -528728 . DOI: 10.7527/S1000-6893.2023.28728

References

1 SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences[R]. Washington, D. C.: NASA, 2014.
2 周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报201738(3): 020891.
  ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field: Applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica201738(3): 020891 (in Chinese).
3 SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]∥Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992.
4 SPALART P R, RUMSEY C L. Effective inflow conditions for turbulence models in aerodynamic calculations[J]. AIAA Journal200745(10): 2544-2553.
5 MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal199432(8): 1598-1605.
6 MENTER F R, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass Transfer20034(1): 625-632.
7 EISFELD B, BRODERSEN O. Advanced turbulence modelling and stress analysis for the DLR-F6 configuration[C]∥Proceedings of the 23rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2005.
8 RUMSEY C L. Application of Reynolds stress models to separated aerodynamic flows[M]∥ Differential Reynolds Stress Modeling for Separating Flows in Industrial Aerodynamics. Berlin: Springer International Publishing, 2015: 19-37.
9 LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal200947(12): 2894-2906.
10 WANG L, FU S. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow, Turbulence and Combustion201187(1): 165-187.
11 SáNCHEZ-ROCHA M, MENON S. The compressible hybrid RANS/LES formulation using an additive operator[J]. Journal of Computational Physics2009228(6): 2037-2062.
12 DEARDORFF J W. Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer[J]. Boundary-Layer Meteorology19747(1): 81-106.
13 DEARDORFF J W. The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence[J]. Journal of Fluids Engineering197395(3): 429-438.
14 STRELETS M. Detached eddy simulation of massively separated flows[C]∥Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001.
15 PROBST A, RADESPIEL R, KNOPP T. Detached-eddy simulation of aerodynamic flows using a reynolds-stress background model and algebraic RANS/LES sensors[C]∥Proceedings of the 20th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2011.
16 王圣业, 王光学, 董义道, 等. 基于雷诺应力模型的高精度分离涡模拟方法[J]. 物理学报201766(18): 184701.
  WANG S Y, WANG G X, DONG Y D, et al. High-order detached-eddy simulation method based on a Reynolds-stress background model[J]. Acta Physica Sinica201766(18): 184701 (in Chinese).
17 WANG Z J, FIDKOWSKI K, ABGRALL R, et al. High-order CFD methods: Current status and perspective[J]. International Journal for Numerical Methods in Fluids201372(8): 811-845.
18 BASSI F, GHIDONI A, PERBELLINI A, et al. A high-order Discontinuous Galerkin solver for the incompressible RANS and k?ω turbulence model equations[J]. Computers & Fluids201498: 54-68.
19 ZHOU C, WANG Z J. CPR high-order discretization of the RANS equations with the SA model[C]∥Proceedings of the 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015.
20 SCHOENAWA S, HARTMANN R. Discontinuous Galerkin discretization of the Reynolds-averaged Navier-Stokes equations with the shear-stress transport model[J]. Journal of Computational Physics2014262: 194-216.
21 BASSI F, CRIVELLINI A, REBAY S, et al. Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k?ω turbulence model equations[J]. Computers & Fluids200534(4-5): 507-540.
22 CRIVELLINI A, D’ALESSANDRO V, BASSI F. A Spalart-Allmaras turbulence model implementation in a discontinuous Galerkin solver for incompressible flows[J]. Journal of Computational Physics2013241: 388-415.
23 LORINI M, BASSI F, COLOMBO A, et al. Discontinuous Galerkin solution of the RANS and kL-k?log(ω) equations for natural and bypass transition[J]. Compu-ters & Fluids2021214: 104767.
24 HARTMANN R, HELD J, LEICHT T. Adjoint-based error estimation and adaptive mesh refinement for the RANS and k?ω turbulence model equations[J]. Journal of Computational Physics2011230(11): 4268-4284.
25 YANG Y C, ZHA G C. Simulation of airfoil stall flows using IDDES with high order schemes[C]∥Proceedings of the 46th AIAA Fluid Dynamics Conference. Reston: AIAA, 2016.
26 GAN J Y, SHEN Y Q, ZHA G C. Comparison of drag prediction using RANS models and DDES for the DLR-F6 configuration using high order schemes[C]∥Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016.
27 ANTONIADIS A F, TSOUTSANIS P, DRIKAKIS D. Assessment of high-order finite volume methods on unstructured meshes for RANS solutions of aeronautical configurations[J]. Computers & Fluids2017146: 86-104.
28 WANG Y T, ZHANG Y L, LI S, et al. Calibration of a γ-Reθ transition model and its validation in low-speed flows with high-order numerical method[J]. Chinese Journal of Aeronautics201528(3): 704-711.
29 王运涛, 孙岩, 王光学, 等. 湍流模型离散精度对数值模拟影响的计算分析[J]. 航空学报201536(5): 1453-1459.
  WANG Y T, SUN Y, WANG G X, et al. Numerical analysis of the effect of discrete accuracy of turbulence model on numerical simulation[J]. Acta Aeronautica et Astronautica Sinica201536(5): 1453-1459 (in Chinese).
30 王运涛, 孙岩, 孟德虹, 等. CRM翼身组合体模型高阶精度数值模拟[J]. 航空学报201738(3): 120298.
  WANG Y T, SUN Y, MENG D H, et al. High-order numerical simulation of CRM wing-body model[J]. Acta Aeronautica et Astronautica Sinica201738(3): 120298 (in Chinese).
31 TU G H, DENG X G, MAO M L. Assessment of two turbulence models and some compressibility corrections for hypersonic compression corners by high-order difference schemes[J]. Chinese Journal of Aeronautics201225(1): 25-32.
32 TU G H, DENG X G, MAO M L. Validation of a RANS transition model using a high-order weighted compact nonlinear scheme[J]. Science China Physics, Mechanics and Astronomy201356(4): 805-811.
33 WANG S Y, DENG X G, WANG G X, et al. Blending the eddy-viscosity and reynolds-stress models using uniform high-order discretization[J]. AIAA Journal202058(12): 5361-5378.
34 WANG S Y, FU X, DENG X G. Higher-order aerodynamic numerical simulations in compressible RANS framework with inverse-ω scale variable[J]. Aerospace Science and Technology2022131: 107971.
35 FU X, DENG X G, WANG S Y, et al. High-order discretization of the Reynolds stress model with an ε_β-adaptive algorith[J]. Acta Mechanica Sinica202238(6): 1-14.
36 FU X, WANG S Y, DENG X G. Assessment of alternative scale-providing variables in a Reynolds-stress model using high-order methods[J]. Acta Mechanica Sinica202238(12): 1-15.
37 LI M, LIU W, ZHANG L P, et al. Applications of high order hybrid DG/FV schemes for two-dimensional RANS simulations[J]. Procedia Engineering2015126: 628-632.
38 JIANG Z H, YAN C, YU J, et al. A spalart-allmaras turbulence model implementation for high-order discontinuous Galerkin solution of the reynolds-averaged navier-stokes equations[J]. Flow, Turbulence and Combustion201696(3): 623-638.
39 DZANIC T, GIRIMAJI S S, WITHERDEN F D. Partially-averaged Navier-Stokes simulations of turbulence within a high-order flux reconstruction framework[J]. Journal of Computational Physics2022456: 110992.
40 COCKBURN B, SHU C W. TVB runge-kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework[J]. Mathematics of Computation198952(186): 411.
41 COCKBURN B, HOU S, SHU C W. The runge-kutta local projection discontinuous Galerkin finite element method for conservation laws. IV: The multidimensional case[J]. Mathematics of Computation199054(190): 545.
42 DENG X G, LIU X, MAO M L, et al. Investigation on weighted compact fifth-order nonlinear scheme and applications to complex flow[C]∥Proceedings of the 17th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2005.
43 WANG S Y, DONG Y D, DENG X G, et al. High-order simulation of aeronautical separated flows with a reynold stress model[J]. Journal of Aircraft201855(3): 1177-1190.
44 ZHENG S C, DENG X G, WANG D F, et al. A parameter-free ε? adaptive algorithm for improving weighted compact nonlinear schemes[J]. International Journal for Numerical Methods in Fluids201990(5): 247-266.
45 PONT G, BRENNER P, CINNELLA P, et al. Multiple-correction hybrid k-exact schemes for high-order compressible RANS-LES simulations on fully unstructured grids[J]. Journal of Computational Physics2017350: 45-83.
46 NGUYEN N, PERSSON P O, PERAIRE J. RANS solutions using high order discontinuous Galerkin methods[C]∥Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
47 OLIVER T, DARMOFAL D. An unsteady adaptation algorithm for discontinuous Galerkin discretizations of the RANS equations[C]∥Proceedings of the 18th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2007.
48 CRIVELLINI A, D’ALESSANDRO V, BASSI F. High-order discontinuous Galerkin solutions of three-dimensional incompressible RANS equations[J]. Computers & Fluids201381: 122-133.
49 WANG Z J, ZHANG L P, LIU Y. Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional systems[J]. Journal of Computational Physics2004194(2): 716-741.
50 LIU Y, VINOKUR M, WANG Z J. Spectral difference method for unstructured grids I: Basic formulation[J]. Journal of Computational Physics2006216(2): 780-801.
51 HAGA T, FURUDATE M, SAWADA K. RANS simulation using high-order spectral volume method on unstructured tetrahedral grids[C]∥Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009.
52 HUYNH H T. A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods[C]∥Proceedings of the 18th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2007.
53 WANG Z J, HUYNH H T. A review of flux reconstruction or correction procedure via reconstruction method for the Navier-Stokes equations[J]. Mechanical Engineering Reviews20163(1): 15-475.
54 ZHU H, FU S, SHI L, et al. A hybrid RANS-implicit LES approach for the high-order FR/CPR method[C]∥ Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016.
55 JIANG Z H, YAN C, YU J. Implementation of the transition model for high order discontinuous Galerkin method with hybrid discretization strategy[J]. Compu-ters & Fluids2021218: 104838.
56 NASR N BEN, GEROLYMOS G A, VALLET I. Low-diffusion approximate Riemann solvers for Reynolds-stress transport[J]. Journal of Computational Physics2014268: 186-235.
57 ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics1997135(2): 250-258.
58 SPEZIALE C G. Turbulence modeling in noninertial frames of reference[J]. Theoretical and Computational Fluid Dynamics19891(1): 3-19.
59 ZHA G C. Low diffusion efficient upwind scheme[J]. AIAA Journal200543(5): 1137-1140.
60 TORO E F, SPRUCE M, SPEARES W. Restoration of the contact surface in the HLL-Riemann solver[J]. Shock Waves19944(1): 25-34.
61 LIOU M S. A sequel to AUSM: AUSM+[J]. Journal of Computational Physics1996129(2): 364-382.
62 LIOU M S. A sequel to AUSM, part II: AUSM+-up for all speeds[J]. Journal of Computational Physics2006214(1): 137-170.
63 LEER B V, THOMAS J L, ROE P L, NEWSOME R W. A comparison of numerical flux for mulasforthe Euler and Navier-Stokese quations[C]∥Proceedings of the 8th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 1987.
64 STEGER J L, WARMING R F. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods[J]. Journal of Computational Physics198140(2): 263-293.
65 LIU F, ZHENG X Q. A strongly coupled time-marching method for solving the navier-stokes andk-ω turbulence model equations with multigrid[J]. Journal of Computational Physics1996128(2): 289-300.
66 BARAKOS G, DRIKAKIS D. Implicit unfactored implementation of two-equation turbulence models in compressible Navier-Stokes methods[J]. International Journal for Numerical Methods in Fluids199828(1): 73-94.
67 夏陈超, 陈伟芳, 郭中州, 等. 隐式紧耦合SST和TNT湍流模型的高速流动数值模拟[J]. 航空动力学报201530(4): 936-943.
  XIA C C, CHEN W F, GUO Z Z, et al. Numerical simulation of implicit fully coupled SST and TNT turbulence models for high speed flows[J]. Journal of Aerospace Power201530(4): 936-943 (in Chinese).
68 王圣业. 高精度WCNS格式在亚/跨声速分离流动中的应用研究[D]. 长沙: 国防科技大学, 2018.
  WANG S Y. Application research of high-order weighted compact nonlinear schemes in subsonic/transonic separated flows[D]. Changsha: National University of Defense Technology, 2018 (in Chinese).
69 陈江涛, 章超, 吴晓军, 等. 考虑数值离散误差的湍流模型选择引入的不确定度量化[J]. 航空学报202142(9): 625741.
  CHEN J T, ZHANG C, WU X J, et al. Quantification of turbulence model-selection uncertainties considering discretization errors[J]. Acta Aeronautica et Astronautica Sinica202142(9): 625741 (in Chinese).
70 HUANG P, COAKLEY T. An implicit Navier-Stokes code for turbulent flow modeling[C]∥Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992.
71 LAUNDER B E, SHARMA B I. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc[J]. Letters in Heat and Mass Transfer19741(2): 131-137.
72 WILCOX D C. Turbulence modeling for CFD[M]. 3rd edition. La Canada: DCW Industies, Inc, 2006.
73 BATTEN P, LESCHZINER M A, GOLDBERG U C. Average-state jacobians and implicit methods for compressible viscous and turbulent flows[J]. Journal of Computational Physics1997137(1): 38-78.
74 MERKLE C L, DESHPANDE M, VENKATESWARAN S. Efficient implementation of turbulence modeling in computational schemes[C]∥Proceedings of the Second US National Congress on Computational Mechanics. Oxford: Pergamon Press, 1993.
75 MERCI B, STEELANT J, VIERENDEELS J, et al. Computational treatment of source terms in two-equation turbulence models[J]. AIAA Journal200038(11): 2085-2093.
76 YANG Z, SHIH T H. New time scale based k-epsilon model for near-wall turbulence[J]. AIAA Journal199331(7): 1191-1198.
77 MOR-YOSSEF Y, LEVY Y. Unconditionally positive implicit procedure for two-equation turbulence models: application to k-ω turbulence models[J]. Journal of Computational Physics2006220(1): 88-108.
78 MOR-YOSSEF Y. Robust turbulent flow simulations using a Reynolds-stress-transport model on unstructured grids[J]. Computers & Fluids2016129: 111-133.
79 CHASSAING J C, GEROLYMOS G A, VALLET I. Efficient and robust reynolds-stress model computation of three-dimensional compressible flows[J]. AIAA Journal200341(5): 763-773.
80 CHAOUAT B. Reynolds stress transport modeling for high-lift airfoil flows[J]. AIAA Journal200644(10): 2390-2403.
81 MOR-YOSSEF Y. Unconditionally stable time marching scheme for Reynolds stress models[J]. Journal of Computational Physics2014276: 635-664.
82 NGUYEN N, PERSSON P O, PERAIRE J. RANS solutions using high order discontinuous Galerkin methods[C]∥Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
83 BURGESS N, MAVRIPLIS D. Robust computation of turbulent flows using a discontinuous Galerkin method[C]∥ Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012.
84 MORO D, NGUYEN N C, PERAIRE J. Navier-stokes solution using hybridizable discontinuous Galerkin methods[C]∥20th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2011.
85 ALLMARAS S R, JOHNSON F T, SPALART P R. Modications and Clarications for the Implementation of the Spalart-Allmaras Turbulence Model[J]. Computational Fluid Dynamics2012.
86 是勋刚. 湍流[M]. 天津: 天津大学出版社, 1994.
  SHI X G. Rapids[M]. Tianjin: Tianjin University Press, 1994 (in Chinese).
87 CHOU P Y. On velocity correlations and the solutions of the equations of turbulent fluctuation[J]. Quarterly of Applied Mathematics19453(1): 38-54.
88 SPEZIALE C G, ABID R, ANDERSON E C. Critical evaluation of two-equation models for near-wall turbulence[J]. AIAA Journal199230(2): 324-331.
89 CHIEN K Y. Predictions of channel and boundary-layer flows with a low-reynolds-number turbulence model[J]. AIAA Journal198220(1): 33-38.
90 CRAFT T J, LAUNDER B E. A Reynolds stress closure designed for complex geometries[J]. International Journal of Heat and Fluid Flow199617(3): 245-254.
91 KOLMOGOROV A N. Equations of Turbu1ent Motion of an Incompressib1e F1uid. Izvestia Ac demy of Sciences[J]. USSR: Physics19426(1-2): 56-58.
92 ILINCA F, PELLETIER D. Positivity preservation and adaptive solution for the k-ε model of turbulence[J]. AIAA Journal199836(1): 44-50.
93 ILINCA F, PELLETIER D. Positivity preservation and adaptive solution of two-equation models of turbulence[J]. International Journal of Thermal Sciences199938(7): 560-571.
94 KALITZIN G, GOULD A BENTON J. Application of two-equation turbulence models in aircraft design[C]∥Proceedings of the 34th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1996.
95 TOGITI V K, EISFELD B. Assessment of g-equation formulation for a second-moment Reynolds stress turbulence model[C]∥Proceedings of the 22nd AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2015.
96 ROTTA J. Statistische theorie nichthomogener turbulenz[J]. Zeitschrift Für Physik1951129(6): 547-572.
97 MENTER F R, EGOROV Y. The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description[J]. Flow, Turbulence and Combustion201085(1): 113-138.
98 ABDOL-HAMID K S. Assessments of k-kL turbulence model based on menter’s modification to rotta’s two-equation model[J]. International Journal of Aerospace Engineering20152015: 1-18.
99 HANJALIE K, LAUNDER B E. Contribution towards a Reynolds stress closure for low-Reynolds-number turbulence[J]. Journal of Fluid Mechanics197674(4): 593-610.
100 YAKHOT V, ORSZAG S A. Renormalization group analysis of turbulence: I. Basic theory[J]. Journal of Scientic Computing19861(1): 1-51.
101 SHIMA N. Low-Reynolds-number second-moment closure without wall-reflection redistribution terms[J]. International Journal of Heat and Fluid Flow199819(5): 549-555.
102 CRAFT T J, LAUNDER B E. A Reynolds stress closure designed for complex geometries[J]. International Journal of Heat and Fluid Flow199617(3): 245-254.
103 CRAFT T J. Developments in a low-Reynolds-number second-moment closure and its application to separating and reattaching flows[J]. International Journal of Heat and Fluid Flow199819(5): 541-548.
104 JAKIRLIC S, HANJALIC K. A new approach to modelling near-wall turbulence energy and stress dissipation[J]. Journal of Fluid Mechanics2002459: 139-166.
105 EISFELD B, TOGITI V, BRAUN S,et al. Reynolds-stress model computations of the NASA juncture flow experiment[C]∥Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
106 KOK J C, SPEKREIJSE S P. Efficient and accurate implementation of the k-ω turbulence model in the NLR multi-block Navier-Stokes system[C]∥Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering. Barcelona: ECCOMAS, 2000.
107 XIAO Z X, CHEN H X, Fu S, et al. Computations with k-g model for complex configurations at high-incidence[J]. Journal of Aircraft200542(2):462-468.
108 LAKSHMIPATHY S, TOGITI V. Assessment of alternative formulations for the specific-dissipation rate in RANS and variable-resolution turbulence models[C]∥Proceedings of the 20th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2011.
109 RODI W, SPALDING D B. A two-parameter model of turbulence, and its application to free jets[J]. W?rme-Und Stoffübertragung19703(2): 85-95.
110 王新光, 毛枚良, 何琨, 等. 壁面函数在超声速湍流模拟中的应用[J]. 航空学报202243(9): 126153.
  WANG X G, MAO M L, HE K, et al. Application of wall function to supersonic turbulence simulation[J]. Acta Aeronautica et Astronautica Sinica202243(9): 126153 (in Chinese).
111 徐晶磊, 阎超, 范晶晶. 通过求解输运方程计算壁面距离[J]. 应用数学和力学201132(2): 135-143.
  XU J L, YAN C, FAN J J. Computations of wall distances by solving a transport equation[J]. Applied Mathematics and Mechanics201132(2): 135-143 (in Chinese).
112 NITHIARASU D P, LIU D C B, TUCKER P P G. Wall distance calculation using Eikonal/Hamilton-Jacobi equations on unstructured meshes—A finite element approach[J]. Engineering Computations201027(5): 645-657.
113 刘君, 韩芳, 魏雁昕. 应用维数分裂方法推广MUSCL和WENO格式的若干问题[J]. 航空学报202243(3): 125009.
  LIU J, HAN F, WEI Y X. MUSCL and WENO schemes problems generated by dimension splitting approach[J]. Acta Aeronautica et Astronautica Sinica202243(3): 125009 (in Chinese).
114 DENG X G, MAO M L, TU G H, et al. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics2011230(4): 1100-1115.
115 DENG X G, MIN Y B, MAO M L, et al. Further studies on Geometric Conservation Law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics2013239: 90-111.
116 GHATE A, LELE S K. Finite difference methods for turbulence simulations[M]∥Numerical Methods in Turbulence Simulation. Amsterdam: Elsevier, 2023: 235-284.
117 JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics1996126(1): 202-228.
118 FU L. A very-high-order TENO scheme for all-speed gas dynamics and turbulence[J]. Computer Physics Communications2019244: 117-131.
119 LELE S K. Compact finite difference schemes with spectral-like resolution[J]. Journal of Computational Physics1992103(1): 16-42.
120 KUYA Y, KAWAI S. High-order accurate kinetic-energy and entropy preserving (KEEP) schemes on curvilinear grids[J]. Journal of Computational Physics2021442: 110482.
121 任玉新, 王乾, 潘建华, 等. 构建非结构网格高精度有限体积方法的新途径[J]. 航空学报202142(9): 625783.
  REN Y X, WANG Q, PAN J H, et al. Novel approaches to design of high order finite volume schemes on unstructured grids[J]. Acta Aeronautica et Astronautica Sinica202142(9): 625783 (in Chinese).
122 BUI T T. A parallel, finite-volume algorithm for large-eddy simulation of turbulent flows[J]. Computers & Fluids200029(8): 877-915.
123 TRAVIN A, SHUR M, STRELETS M, et al. Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows[M]∥Fluid Mechanics and Its Applications. Dordrecht: Springer Netherlands, 2002: 239-254.
124 张扬. 基于混合网格的飞行器大迎角DES类数值模拟方法研究[D]. 绵阳: 中国空气动力研究与发展中心, 2016: 19-20.
  ZHANG Y. Detached-eddy simulation of aircrafts at high incidence based on hybrid grids[D]. Mianyang: China Aerodynamics Research and Development Center, 2016: 19-20 (in Chinese).
125 姜屹. 线性耗散紧致格式应用于计算气动声学的基础研究[D]. 绵阳: 中国空气动力研究与发展中心, 2009: 13-15.
  JIANG Y. Preliminary study of dissipative compact schemes using for computational aero acoustics[D]. Mianyang: China Aerodynamics Research and Development Center, 2009: 13-15 (in Chinese).
126 LI H, LIU W, WANG S Y, et al. High-order delayed detached eddy simulation of separated flow with self-adaptive dissipation[J]. Journal of Aircraft202158(3): 514-525.
127 WONG M L, LELE S K. High-order localized dissipation weighted compact nonlinear scheme for shock- and interface-capturing in compressible flows[J]. Journal of Computational Physics2017339: 179-209.
128 HU X Y, WANG Q, ADAMS N A. An adaptive central-upwind weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics2010229(23): 8952-8965.
129 Langley Research Center, NASA. Turbulence modeling resource[EB/OL]. [2023-03-31]. .
130 KROLL N, BIELER H, DECONINCK H. ADIGMA - A european initiative on the development of adaptive higher-order variational methods for aerospace applications[M]∥ Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol 113. Berlin, Heidelberg: Springer, 2010.
131 The international workshop on high order CFD methods: Advanced and complex test cases[EB/OL]. [2023-03-31]. .
132 MAVRIPLIS D J. Progress in CFD discretizations, algorithms and solvers for aerodynamic flows[C]∥ Proceedings of the AIAA Aviation 2019 Forum. Reston: AIAA, 2019.
133 VISBAL M R, GAITONDE D V. On the use of higher-order finite-difference schemes on curvilinear and deforming meshes[J]. Journal of Computational Physics2002181(1): 155-185.
134 NONOMURA T, IIZUKA N, FUJII K. Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids[J]. Computers & Fluids201039(2): 197-214.
135 GALBRAITH M C, KARMAN S L. HLPW-4/GMGW-3: High order discretization technology focus group workshop summary[C]∥Proceedings of the AIAA AVIATION 2022 Forum. Reston: AIAA, 2022.
136 NICHOLS R H. A Summary of the turbulence models in the CREATETM-AV kestrel flow solvers[C]∥Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
137 NARDUCCI R. Industry assessment of HPCMP CREATETM-AV helios[C]∥Proceedings of the 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015.
138 HOLST K R, GLASBY R S, ERWIN J T, et al. Current status of the finite-element fluid solver (COFFE) within HPCMP CREATE?-AV kestrel[C]∥Proceedings of the AIAA Scitech 2021 Forum. Reston: AIAA, 2021.
Outlines

/