ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Non⁃hierarchical multi⁃model fusion order reduction based on aerodynamic and aerothermodynamic characteristics for cross⁃domain morphing aircraft
Received date: 2022-11-14
Revised date: 2022-12-07
Accepted date: 2023-01-09
Online published: 2023-01-12
Supported by
National Natural Science Foundation of China(52272360);Graduate Technological Innovation Project of Beijing Institute of Technology(2022YCXZ017)
Cross-domain morphing aircraft can change their configurations to adapt to different flight conditions and improve flight capability in large airspace within wide speed range, consequently becoming a topic of interest. This paper constructs a high-fidelity aerodynamic and aerothermodynamic model of a quasi-waverider cross-domain morphing aircraft based on RANS equations and low-fidelity models based on engineering estimation methods. The Non-hierarchical Multi-model Fusion Method using Multi-level Kriging and Quadratic Programming (NMF-MKQP) is proposed considering the existence of non-hierarchical multi-fidelity models for hypersonic aerodynamic and aerothermodynamic analysis. The uncoupled expression of the mean squared error is derived to convert the global optimization problem of scaling factor maximum likelihood estimation into a quadratic programming problem, and the scaling factors are analytically determined accordingly. In this way, the efficiency of the proposed model reduction method is significantly improved while reducing the computation cost. The NMF-MKQP outperforms the state-of-the-art multi-fidelity surrogate modeling methods in terms of approximation accuracy. The aerodynamic and aerothermodynamic characteristics of cross-domain morphing aircraft with varying sweep angles and spans are assessed based on the constructed reduced-order model, further establishing a morphing strategy during cross-domain gliding. The flight performance increases with the lift-to-drag ratio, while ensuring a decreasing maximum heat flux.
Yufei WU , Teng LONG , Renhe SHI , Yao ZHANG . Non⁃hierarchical multi⁃model fusion order reduction based on aerodynamic and aerothermodynamic characteristics for cross⁃domain morphing aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(21) : 528259 -528259 . DOI: 10.7527/S1000-6893.2023.28259
1 | 白鹏, 陈钱, 徐国武, 等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报, 2019, 37(3): 426-443. |
BAI P, CHEN Q, XU G W, et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(3): 426-443 (in Chinese). | |
2 | AJAJ R M, PARANCHEERIVILAKKATHIL M S, AMOOZGAR M, et al. Recent developments in the aeroelasticity of morphing aircraft[J]. Progress in Aerospace Sciences, 2021, 120: 100682. |
3 | PHOENIX A A, MAXWELL J R, ROGERS R E. Mach 5-3.5 morphing waverider accuracy and aerodynamic performance evaluation[J]. Journal of Aircraft, 2019, 56(5): 2047-2061. |
4 | 彭悟宇, 杨涛, 涂建秋, 等. 高超声速变形飞行器翼面变形模式分析[J]. 国防科技大学学报, 2018, 40(3): 15-21. |
PENG W Y, YANG T, TU J Q, et al. Analysis on wing deformation modes of hypersonic morphing aircraft[J]. Journal of National University of Defense Technology, 2018, 40(3): 15-21 (in Chinese). | |
5 | 阎超. 航空CFD四十年的成就与困境[J]. 航空学报, 2022, 43(10): 526490. |
YAN C. Achievements and predicaments of CFD in aeronautics in past forty years[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 526490 (in Chinese). | |
6 | 张斌. 基于自由变形和代理优化的飞行器气动外形优化设计研究[D]. 长沙: 国防科技大学, 2019. |
ZHANG B. Research on aerodynamic shape optimization design of vehicle based on free form deformation and surrogate-based optimization[D]. Changsha: National University of Defense Technology, 2019 (in Chinese). | |
7 | DREYER E R, GRIER B J, MCNAMARA J J, et al. Rapid steady-state hypersonic aerothermodynamic loads prediction using reduced fidelity models[J]. Journal of Aircraft, 2021, 58(3): 663-676. |
8 | 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689. |
ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689 (in Chinese). | |
9 | LAM R, ALLAIRE D L, WILLCOX K E. Multifidelity optimization using statistical surrogate modeling for non-hierarchical information sources[C]∥ 56 th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015: 0143. |
10 | XIAO M Y, ZHANG G H, BREITKOPF P, et al. Extended Co-Kriging interpolation method based on multi-fidelity data[J]. Applied Mathematics and Computation, 2018, 323: 120-131. |
11 | CHENG M, JIANG P, HU J X, et al. A multi-fidelity surrogate modeling method based on variance-weighted sum for the fusion of multiple non-hierarchical low-fidelity data[J]. Structural and Multidisciplinary Optimization, 2021, 64(6): 3797-3818. |
12 | ZHANG T T, WANG Z G, HUANG W, et al. Parameterization and optimization of hypersonic-gliding vehicle configurations during conceptual design[J]. Aerospace Science and Technology, 2016, 58: 225-234. |
13 | 李铭琦. 基于热流固多场耦合分析的剪切式滑动蒙皮变后掠翼设计与优化[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
LI M Q. Design and optimization of a shear sliding skin variable sweep wing based on thermal-fluid-solid multi-field coupling analysis[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese). | |
14 | MAIER W T, NEEDELS J T, GARBACZ C, et al. SU2-NEMO: An open-source framework for high-Mach nonequilibrium multi-species flows[J]. Aerospace, 2021, 8(7): 193. |
15 | SATA 999. PyPanair [EB/OL]. (2017-04-20)[2022-10-28]. . |
16 | GENTRY A E, SMYTH D, OLIVER W. The Mark IV supersonic-hypersonic arbitrary-body program. volume II. program formulation[R]. 1973 |
17 | 李正洲, 贺元元, 高昌, 等. 有翼再入飞行器气动外形集成设计优化[J]. 航空学报, 2020, 41(5): 623356. |
LI Z Z, HE Y Y, GAO C, et al. Optimization of aeroshape integrated design of winged re-entry vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623356 (in Chinese). | |
18 | PARK S H, NEEB D, PLYUSHCHEV G, et al. A study on heat flux predictions for re-entry flight analysis[J]. Acta Astronautica, 2021, 187: 271-280. |
19 | ZHAO M. Prediction and validation technologies of aerodynamic force and heat for hypersonic vehicle design[M]. Singapore: Springer, 2021. |
20 | 周宇航. 考虑防热层的高速火箭弹气动热计算[D]. 南京: 南京理工大学, 2017. |
ZHOU Y H. Aerodynamic heat calculation of high-speed rocket with heat protection layer[D]. Nanjing: Nanjing University of Science and Technology, 2017 (in Chinese). | |
21 | 叶年辉, 龙腾, 武宇飞, 等. 基于Kriging代理模型的约束差分进化算法[J]. 航空学报, 2021, 42(6): 324580. |
YE N H, LONG T, WU Y F, et al. Kriging-assisted constrained differential evolution algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 324580 (in Chinese). | |
22 | 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225. |
HAN Z H. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225 (in Chinese). | |
23 | DASH S, MANDAL B N, PARSAD R. On the construction of nested orthogonal Latin hypercube designs[J]. Metrika, 2020, 83(3): 347-353. |
24 | TOAL D J J. Some considerations regarding the use of multi-fidelity Kriging in the construction of surrogate models[J]. Structural and Multidisciplinary Optimization, 2015, 51(6): 1223-1245. |
25 | 李昊歌, 杨华, 杨雨欣, 等. 高超声速升力体迎风面精细化降热优化设计[J]. 航空学报, 2022, 43(S2): 124-137. |
Refinement optimization design for heat reduction on windward surface of hypersonic lifting body[J]. Acta Aeronauticaet Astronautica Sinica, 2022, 43(S2): 124-137 (in Chinese). | |
26 | 冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报, 2022, 43(10): 527449. |
RAN M P, WANG C C, LIU H H, et al. Development status and prospect of control technology for variant aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527449 (in Chinese). |
/
〈 |
|
〉 |