ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Drag reduction characteristics of opposing plasma synthetic jet in hypersonic flow
Received date: 2022-06-30
Revised date: 2022-07-29
Accepted date: 2022-08-25
Online published: 2022-08-31
Supported by
National Numerical Windtunnel Project(0747-2266SCCMY003);National Natural Science Foundation of China(11872208)
Plasma Synthetic Jet (PSJ) is a high-temperature, high-speed and zero-net mass flux jet generated by arc discharge in a semi-closed cavity, with the advantages of high jet velocity, strong penetration ability and fast response, thus having significant application potential in the flow control of hypersonic vehicles. To study the flow control and drag reduction effect of the PSJ on hypersonic vehicles, we numerically simulate the bluff body model in the Mach 6 flow field. The results show that the PSJ can significantly change the shock wave distance and drag characteristics. Within a cycle after discharge, the average drag can be reduced by 37.67%, the maximum drag reduction effect can reach 76.03%, the effect of shock wave control and flow drag reduction by the PSJ is verified, and the conversion mechanism of the short penetration mode and long penetration mode of the flow field is analyzed.
Key words: hypersonic; Plasma Synthetic Jet (PSJ); opposing jet; flow control; drag reduction; mode
Xudong ZHANG , Zheng LI , Hao DONG , Siyuan GAO , Zubi JI , Kaixin LI , Guanghui BAI . Drag reduction characteristics of opposing plasma synthetic jet in hypersonic flow[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(S2) : 115 -123 . DOI: 10.7527/S1000-6893.2022.27727
1 | 陈浮, 权晓波, 宋彦萍. 空气动力学基础[M]. 哈尔滨: 哈尔滨工业大学出版社, 2015. |
CHEN F, QUAN X B, SONG Y P. Fundamentals of aerodynamics[M]. Harbin: Harbin Institute of Technology Press, 2015 (in Chinese). | |
2 | 高广宇, 刘冰, 黄伟, 等. 高超声速飞行器逆向射流减阻防热技术综述[J]. 战术导弹技术, 2021(4): 67-75, 135. |
GAO G Y, LIU B, HUANG W, et al. Review of opposing jet drag reduction and thermal protection technology for hypersonic vehicle[J]. Tactical Missile Technology, 2021(4): 67-75, 135 (in Chinese). | |
3 | ZHENG Y Y, AHMED N A. Thermal protection systems in spacecraft re-entry-a brief overview[J]. Journal of Heat and Mass Transfer, 2013,8(1):99-118. |
4 | ENGBLOM W A, GOLDSTEIN D B, LADOON D, et al. Fluid dynamics of hypersonic forward-facing cavity flow[J]. Journal of Spacecraft and Rockets, 1997, 34(4): 437-444. |
5 | SARAVANAN S, JAGADEESH G, REDDY K P J. Investigation of missile-shaped body with forward-facing cavity at Mach 8[J]. Journal of Spacecraft and Rockets, 2009, 46(3): 577-591. |
6 | AHMED M Y M, QIN N. Recent advances in the aerothermodynamics of spiked hypersonic vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6): 425-449. |
7 | KNIGHT D. Survey of aerodynamic drag reduction at high speed by energy deposition[J]. Journal of Propulsion and Power, 2008, 24(6): 1153-1167. |
8 | FINLEY P J. The flow of a jet from a body opposing a supersonic free stream[J]. Journal of Fluid Mechanics, 1966, 26(2): 337-368. |
9 | 邓帆, 谢峰, 黄伟, 等. 逆向喷流技术在高超声速飞行器上的应用[J]. 空气动力学学报, 2017, 35(4): 485-495. |
DENG F, XIE F, HUANG W, et al. Applications of counterflowing jet technology in hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2017, 35(4): 485-495 (in Chinese). | |
10 | 董昊, 张旭东, 刘是成, 等. 高超声速逆向喷流数值模拟和风洞试验[J]. 空气动力学学报, 2022, 40(4): 101-109. |
DONG H, ZHANG X D, LIU S C, et al. Numerical and experimental study on opposing jet in hypersonic flow[J]. Acta Aerodynamica Sinica, 2022, 40(4): 101-109 (in Chinese). | |
11 | 陆海波, 田世英. 迎风凹腔: 一种有效的高超声速飞行器热防护选择[J]. 飞航导弹, 2015(6): 11-15, 26. |
LU H B, TIAN S Y. Windward cavity-an effective thermal protection option for hypersonic vehicle[J]. Aerodynamic Missile Journal, 2015(6): 11-15, 26 (in Chinese). | |
12 | LU H B, LIU W Q. Research on thermal protection mechanism of forward-facing cavity and opposing jet combinatorial thermal protection system[J]. Heat and Mass Transfer, 2014, 50(4): 449-456. |
13 | SUN X W, GUO Z Y, HUANG W, et al. Drag and heat reduction mechanism induced by a combinational novel cavity and counterflowing jet concept in hypersonic flows[J]. Acta Astronautica, 2016, 126: 109-119. |
14 | ZHANG R R, DONG M Z, HUANG W, et al. Drag and heat flux reduction mechanism induced by the combinational forward-facing cavity and pulsed counterflowing jet configuration in supersonic flows[J]. Acta Astronautica, 2019, 160: 62-75. |
15 | HUANG W, CHEN Z, YAN L, et al. Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows: A review[J]. Progress in Aerospace Sciences, 2019, 105: 31-39. |
16 | ZHANG J, MA H D, QIN Y M. Experimental investigation on flow characteristic of combination of forward-facing jet and spike[C]∥21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017. |
17 | 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027. |
ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese). | |
18 | CARUANA D, BARRICAU P, HARDY P. The “plasma synthetic jet” actuator. aero-thermodynamic characterization and first flow control applications[C]∥47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
19 | ZHANG Z B, ZHANG X N, WU Y, et al. Experimental research on the shock wave control based on one power supply driven plasma synthetic jet actuator array[J]. Acta Astronautica, 2020, 171: 359-368. |
20 | NARAYANASWAMY V, RAJA L L, CLEMENS N T. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator[J]. Physics of Fluids, 2012, 24(7): 076101. |
21 | XIE W, LUO Z B, ZHOU Y, et al. Experimental study on ramp shock wave control in Ma3 supersonic flow using two-electrode SparkJet actuator[J]. Processes, 2020, 8(12): 1679. |
22 | WANG H Y, LI J, JIN D, et al. High-frequency counter-flow plasma synthetic jet actuator and its application in suppression of supersonic flow separation[J]. Acta Astronautica, 2018, 142: 45-56. |
23 | 陈加政, 胡国暾, 樊国超, 等. 等离子体合成射流对钝头激波的控制与减阻[J]. 航空学报, 2021, 42(7): 124773. |
CHEN J Z, HU G T, FAN G C, et al. Bow shock wave control and drag reduction by plasma synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124773 (in Chinese). | |
24 | XIE W, LUO Z B, HOU L, et al. Characterization of plasma synthetic jet actuator with Laval-shaped exit and application to drag reduction in supersonic flow[J]. Physics of Fluids, 2021, 33(9): 096104. |
25 | BELINGER A, HARDY P, GHERARDI N, et al. Influence of the spark discharge size on a plasma synthetic jet actuator[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2334-2335. |
26 | JI C, LIU B, HUANG W, et al. Investigation on the drag reduction and thermal protection properties of the porous opposing jet in the supersonic flow: A parametric study with constant mass flow rate[J]. Aerospace Science and Technology, 2021, 118: 107064. |
/
〈 |
|
〉 |