Material Engineering and Mechanical Manufacturing

Failure mechanism and protection strategy of thermal barrier coatings under CMAS attack

  • YANG Shanjie ,
  • YAN Xudong ,
  • GUO Hongbo
Expand
  • 1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
    2. Gaona Aero Material Co., Ltd., Beijing 100081, China;
    3. Key Laboratory of High Temperature Structure Materials and Coatings Technology, Ministry of Industry and Information Technology, Beijing 100191, China

Received date: 2022-06-13

  Revised date: 2022-06-28

  Online published: 2022-07-25

Supported by

National Natural Science Foundation of China (51590890)

Abstract

With the trend of higher thrust-weight ratio and thermal efficiency of aero-engine, the turbine inlet temperature increases significantly. Thermal Barrier Coatings (TBCs) of aeroengine blades are increasingly corroded by environmental deposits such as volcanic ash, fly ash, runway debris, industrial smoke, automobile exhaust and PM2.5 during the high-temperature service. The chemical composition of the silicate ash is mostly CaO-MgO-Al2O3-SiO2 (CMAS), and their melting point is about 1 240℃, which is far lower than the service temperature of aeroengine. Once sucked into aero-engine at such high temperature, CMAS can rapidly molten and infiltrates into the TBCs structure. On the one hand, CMAS causes physical impact and damage on the TBCs surface, and the molten CMAS tends to cause blocking of cooling holes in turbine blades, which results in decrease of cooling efficiency, change of temperature and stress distribution in blades. On the other hand, the molten CMAS chemically reacts with the blade coatings, resulting in corrosion spallation and premature failure of TBCs. The durability of TBCs is significantly reduced due to the CMAS deposition. It is very important to make the protection strategy to constrain the adherence and corrosion of molten CMAS on TBCs at high temperature to ensure the development of advanced aero-engine. Besides, mastering the physical and chemical properties of CMAS in different environments is the basis for developing CMAS-resistant TBCs. This paper focuses on the summary of the composition and rheological properties of CMAS and the thermo-chemical and thermo-mechanical failure mechanism of TBCs in CMAS environment. And the solutions to CMAS, such as coating structure optimization, adding permeability barrier layer and sacrificial layer are briefly overviewed.

Cite this article

YANG Shanjie , YAN Xudong , GUO Hongbo . Failure mechanism and protection strategy of thermal barrier coatings under CMAS attack[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(10) : 527613 -527613 . DOI: 10.7527/S1000-6893.2022.27613

References

[1] 刘大响, 金捷. 21世纪世界航空动力技术发展趋势与展望[J]. 中国工程科学, 2004, 6(9):1-8. LIU D X, JIN J. The development trends and prospect of world aeropropulsion technology in the 21st century[J]. Engineering Science, 2004, 6(9):1-8 (in Chinese).
[2] SEHRA A K, WHITLOW W JR. Propulsion and power for 21st century aviation[J]. Progress in Aerospace Sciences, 2004, 40(4-5):199-235.
[3] National Research Council. A review of United States Air Force and Department of Defense aerospace propulsion needs[M]. Washington, D.C.:The National Academies Press, 2006.
[4] PEREPEZKO J H. The hotter the engine, the better[J]. Science, 2009, 326(5956):1068-1069.
[5] 孙明霞, 梁春华. 美国自适应发动机研究的进展与启示[J]. 航空发动机, 2017, 43(1):95-102. SUN M X, LIANG C H. Progress and revelation of US adaptive cycle engine development[J]. Aeroengine, 2017, 43(1):95-102 (in Chinese).
[6] PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566):280-284.
[7] 郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展[J]. 中国材料进展, 2009, 28(S2):18-26. GUO H B, GONG S K, XU H B. Progress in thermal barrier coatings for advanced aeroengines[J]. Materials China, 2009, 28(S2):18-26 (in Chinese).
[8] DAROLIA R. Thermal barrier coatings technology:Critical review, progress update, remaining challenges and prospects[J]. International Materials Reviews, 2013, 58(6):315-348.
[9] 徐惠彬, 宫声凯, 刘福顺. 航空发动机热障涂层材料体系的研究[J]. 航空学报, 2000, 21(1):7-12. XU H B, GONG S K, LIU F S. Recent development in materials design of thermal barrier coatings for gas turbine[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(1):7-12 (in Chinese).
[10] MAZZOCCHI M, HANSSTEIN F, RAGONA M. The 2010 volcanic ash cloud and its financial impact on the European airline industry[J]. CESifo Forum, 2010, 11(2):92-100.
[11] PRATA A J, TUPPER A. Aviation hazards from volcanoes:The state of the science[J]. Natural Hazards, 2009, 51(2):239-244.
[12] BAINES P G, SPARKS R S J. Dynamics of giant volcanic ash clouds from supervolcanic eruptions[J]. Geophysical Research Letters, 2005, 32(24):L24808.
[13] POERSCHKE D L, JACKSON R W, LEVI C G. Silicate deposit degradation of engineered coatings in gas turbines:Progress toward models and materials solutions[J]. Annual Review of Materials Research, 2017, 47:297-330.
[14] LECHNER P, TUPPER A, GUFFANTI M, et al. Volcanic ash and aviation-The challenges of real-time, global communication of a natural hazard[M]//Advances in Volcanology. Cham:Springer International Publishing, 2017:51-64.
[15] PRATA F, ROSE B. Volcanic ash hazards to aviation[M]//The Encyclopedia of Volcanoes. Amsterdam:Elsevier, 2015:911-934.
[16] GUFFANTI M, MAYBERRY G C, CASADEVALL T J, et al. Volcanic hazards to airports[J]. Natural Hazards, 2009, 51(2):287-302.
[17] SMIALEK J L, ARCHER F A, GARLICK R G. Turbine airfoil degradation in the Persian Gulf war[J]. JOM, 1994, 46(12):39-41.
[18] DUNN M G, PADOVA C, MOLLER J E, et al. Performance deterioration of a turbofan and a turbojet engine upon exposure to a dust environment[J]. Journal of Engineering for Gas Turbines and Power, 1987, 109(3):336-343.
[19] CARDWELL N D, THOLE K A, BURD S W. Investigation of sand blocking within impingement and film-cooling holes[J]. Journal of Turbomachinery, 2010, 132(2):021020.
[20] GUFFANTI M, CASADEVALL T, BUDDING K. Encounters of aircraft with volcanic ash clouds:A compilation of known incidents, 1953-2009:545[R]. Reston:US Geological Survey, 2010.
[21] MONTERO X, NARAPARAJU R, GALETZ M C, et al. Study of CMAS infiltration and evaporation behaviour under water vapour/sulphur oxide conditions in EB-PVD 7YSZ[J]. Corrosion Science, 2022, 198:110123.
[22] Smithsonian Institution. Volcanoes of the world (VOTW) database information[DB/OL]. (2022-06-08)[2022-06-13]. https://doi.org/10.5479/si.GVP.VOTW4-2013.
[23] CARR J L, HORVÁTH Á, WU D L, et al. Stereo plume height and motion retrievals for the record-setting Hunga Tonga-Hunga Ha'apai eruption of 15 January 2022[J]. Geophysical Research Letters, 2022, 49(9):2022GL098131.
[24] MILLÁN L, SANTEE M L, LAMBERT A, et al. The hunga Tonga-Hunga Ha'apai hydration of the stratosphere[J]. Geophysical Research Letters, 2022, 49(13):e2022GL099381.
[25] Amaerica Civil Aviation Authority. Guidance regarding flight operations in the vicinity of volcanic ash[M]. West Sussex:Aviation House, 2017:CAP1236.
[26] CLARKSON R J, MAJEWICZ E J, MACK P. A re-evaluation of the 2010 quantitative understanding of the effects volcanic ash has on gas turbine engines[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2016, 230(12):2274-2291.
[27] KUMAR R, ROMMEL S, JIANG C, et al. Effect of CMAS viscosity on the infiltration depth in thermal barrier coatings of different microstructures[J]. Surface and Coatings Technology, 2022, 432:128039.
[28] CASADEVALL T. Volcanic ash and aviation safety:Proceedings of the first international symposium on volcanic ash and aviation safety:2047[R]. Reston:US Geological Survey, 1994.
[29] SIGURDSSON H H B, SIGURDSSON H, HOUGHTON B F, et al. The encyclopedia of volcanoes[M]. Amsterdam:Academic Press, 2015.
[30] WOODS A W, WOHLETZ K. Dimensions and dynamics of co-ignimbrite eruption columns[J]. Nature, 1991, 350(6315):225-227.
[31] SELF S. The effects and consequences of very large explosive volcanic eruptions[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2006, 364(1845):2073-2097.
[32] MASTIN L G, GUFFANTI M, SERVRANCKX R, et al. A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions[J]. Journal of Volcanology and Geothermal Research, 2009, 186(1-2):10-21.
[33] ROSE W I, DURANT A J. Fine ash content of explosive eruptions[J]. Journal of Volcanology and Geothermal Research, 2009, 186(1-2):32-39.
[34] DEAN J, TALTAVULL C, CLYNE T W. Influence of the composition and viscosity of volcanic ashes on their adhesion within gas turbine aeroengines[J]. Acta Materialia, 2016, 109:8-16.
[35] KRAUSE A R, GARCES H F, DWIVEDI G, et al. Calcia-magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings[J]. Acta Materialia, 2016, 105:355-366.
[36] GRANT K M, KRÄMER S, SEWARD G G E, et al. Calcium-magnesium alumino-silicate interaction with yttrium monosilicate environmental barrier coatings[J]. Journal of the American Ceramic Society, 2010, 93(10):3504-3511.
[37] CLARKE D R, OECHSNER M, PADTURE N P. Thermal-barrier coatings for more efficient gas-turbine engines[J]. MRS Bulletin, 2012, 37(10):891-898.
[38] PENG H, WANG L, GUO L, et al. Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits[J]. Progress in Natural Science:Materials International, 2012, 22(5):461-467.
[39] LEVI C G, HUTCHINSON J W, VIDAL-SÉTIF M H, et al. Environmental degradation of thermal-barrier coatings by molten deposits[J]. MRS Bulletin, 2012, 37(10):932-941.
[40] WU J, GUO H B, GAO Y Z, et al. Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits[J]. Journal of the European Ceramic Society, 2011, 31(10):1881-1888.
[41] NARAPARAJU R, HVTTERMANN M, SCHULZ U, et al. Tailoring the EB-PVD columnar microstructure to mitigate the infiltration of CMAS in 7YSZ thermal barrier coatings[J]. Journal of the European Ceramic Society, 2017, 37(1):261-270.
[42] NGUNJOH L N, LI L, ANN B, et al CMAS-resistant barrier coatings:US2019/0048475A1[P]. 2019-02-14.
[43] SELF S. The effects and consequences of very large explosive volcanic eruptions[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364(1845):2073-2097.
[44] AYGUN A, VASILIEV A L, PADTURE N P, et al. Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits[J]. Acta Materialia, 2007, 55(20):6734-6745.
[45] KRÄMER S, YANG J, LEVI C G, et al. Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits[J]. Journal of the American Ceramic Society, 2006, 89(10):3167-3175.
[46] BOROM M P, JOHNSON C A, PELUSO L A. Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings[J]. Surface and Coatings Technology, 1996, 86-87:116-126.
[47] SONG W J, LAVALLÉE Y, HESS K U, et al. Volcanic ash melting under conditions relevant to ash turbine interactions[J]. Nature Communications, 2016, 7:10795.
[48] YANG S J, SONG W J, DINGWELL D B, et al. Surface roughness affects metastable non-wetting behavior of silicate melts on thermal barrier coatings[J]. Rare Metals, 2022, 41(2):469-481.
[49] KUEPPERS U, CIMARELLI C, HESS K U, et al. The thermal stability of Eyjafjallajökull ash versus turbine ingestion test sands[J]. Journal of Applied Volcanology, 2014, 3(1):4.
[50] KIM J, DUNN M G, BARAN A J, et al. Deposition of volcanic materials in the hot sections of two gas turbine engines[J]. Journal of Engineering for Gas Turbines and Power, 1993, 115(3):641-651.
[51] MECHNICH P, BRAUE W, SCHULZ U. High-temperature corrosion of EB-PVD yttria partially stabilized zirconia thermal barrier coatings with an artificial volcanic ash overlay[J]. Journal of the American Ceramic Society, 2011, 94(3):925-931.
[52] GIORDANO D, RUSSELL J K, DINGWELL D B. Viscosity of magmatic liquids:A model[J]. Earth and Planetary Science Letters, 2008, 271(1-4):123-134.
[53] SONG W J, TANG L H, ZHU X D, et al. Flow properties and rheology of slag from coal gasification[J]. Fuel, 2010, 89(7):1709-1715.
[54] SONG W J, TANG L H, ZHU X D, et al. Fusibility and flow properties of coal ash and slag[J]. Fuel, 2009, 88(2):297-304.
[55] SONG W J, HESS K U, DAMBY D E, et al. Fusion characteristics of volcanic ash relevant to aviation hazards[J]. Geophysical Research Letters, 2014, 41(7):2326-2333.
[56] MVLLER D, KUEPPERS U, HESS K U, et al. Mineralogical and thermal characterization of a volcanic ash:Implications for turbine interaction[J]. Journal of Volcanology and Geothermal Research, 2019, 377:43-52.
[57] Deutsches Institut fur Normung. Testing of solid fuels-Determination of ash fusibility:DIN 51730[S]. Berlin:Deutsches Institut fur Normung, 2022.
[58] YANG S J, SONG W J, LAVALLEE Y, et al. Dynamic spreading of re-melted volcanic ash bead on thermal barrier coatings[J]. Corrosion Science, 2020, 170:108659.
[59] CHEN W R, ZHAO L R. Review-Volcanic ash and its influence on aircraft engine components[J]. Procedia Engineering, 2015, 99:795-803.
[60] BONN D, EGGERS J, INDEKEU J, et al. Wetting and spreading[J]. Reviews of Modern Physics, 2009, 81(2):739-805.
[61] DUNN M G, BARAN A J, MIATECH J. Operation of gas turbine engines in volcanic ash clouds[J]. Journal of Engineering for Gas Turbines and Power, 1996, 118(4):724-731.
[62] ZHAO H B, LEVI C G, WADLEY H N G. Molten silicate interactions with thermal barrier coatings[J]. Surface and Coatings Technology, 2014, 251:74-86.
[63] GIORDANO D, NICHOLS A R L, DINGWELL D B. Glass transition temperatures of natural hydrous melts:A relationship with shear viscosity and implications for the welding process[J]. Journal of Volcanology and Geothermal Research, 2005, 142(1-2):105-118.
[64] SHAN X, LUO L R, CHEN W F, et al. Pore filling behavior of YSZ under CMAS attack:Implications for designing corrosion-resistant thermal barrier coatings[J]. Journal of the American Ceramic Society, 2018, 101(12):5756-5770.
[65] GILDERSLEEVE E, VISWANATHAN V, SAMPATH S. Molten silicate interactions with plasma sprayed thermal barrier coatings:Role of materials and microstructure[J]. Journal of the European Ceramic Society, 2019, 39(6):2122-2131.
[66] LI B T, CHEN Z, ZHENG H Z, et al. Wetting mechanism of CMAS melt on YSZ surface at high temperature:First-principles calculation[J]. Applied Surface Science, 2019, 483:811-818.
[67] CHEN Z, ZHENG H Z, LI G F, et al. Mechanism of crack nucleation and growth in YSZ thermal barrier coatings corroded by CMAS at high temperatures:First-principles calculation[J]. Corrosion Science, 2018, 142:258-265.
[68] XIA J, YANG L, WU R T, et al. Degradation mechanisms of air plasma sprayed free-standing yttria-stabilized zirconia thermal barrier coatings exposed to volcanic ash[J]. Applied Surface Science, 2019, 481:860-871.
[69] KAKUDA T R, LEVI C G, BENNETT T D. The thermal behavior of CMAS-infiltrated thermal barrier coatings[J]. Surface and Coatings Technology, 2015, 272:350-356.
[70] WELLMAN R G, NICHOLLS J R. Erosion, corrosion and erosion-corrosion of EB PVD thermal barrier coatings[J]. Tribology International, 2008, 41(7):657-662.
[71] WELLMAN R, WHITMAN G, NICHOLLS J R. CMAS corrosion of EB PVD TBCs:Identifying the minimum level to initiate damage[J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(1):124-132.
[72] HARDER B J, RAMÌREZ-RICO J, ALMER J D, et al. Chemical and mechanical consequences of environmental barrier coating exposure to calcium-magnesium-aluminosilicate[J]. Journal of the American Ceramic Society, 2011, 94(S):178-185.
[73] CHEN X. Calcium-magnesium-alumina-silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coatings[J]. Surface and Coatings Technology, 2006, 200(11):3418-3427.
[74] LI G Z, CAI C Y, WANG Y G, et al. Zirconium silicate growth induced by the thermochemical interaction of yttria-stablized zirconia coatings with molten CMAS deposits[J]. Corrosion Science, 2019, 149:249-256.
[75] QU W W, LI S S, CHEN Z H, et al. Hot corrosion behavior and wettability of calcium-magnesium-alumina-silicate (CMAS) on LaTi2Al9O19 ceramic[J]. Corrosion Science, 2020, 162:108199.
[76] 亢永霞, 白宇, 刘琨, 等. 热障涂层的CMAS腐蚀失效及对策研究[J]. 稀有金属材料与工程, 2017, 46(1):282-288. KANG Y X, BAI Y, LIU K, et al. Corrosion failure mechanism of thermal barrier coatings after infiltration of CMAS deposits and countermeasure study[J]. Rare Metal Materials and Engineering, 2017, 46(1):282-288 (in Chinese).
[77] 何箐, 汪瑞军, 邹晗, 等. 不同结构8YSZ热障涂层对CMAS沉积物的防护作用[J]. 中国表面工程, 2016, 29(4):86-95. HE Q, WANG R J, ZOU H, et al. Protective effects of 8YSZ TBCs with different microstructures against CMAS deposits[J]. China Surface Engineering, 2016, 29(4):86-95 (in Chinese).
[78] PUJOL G, ANSART F, BONINO J P, et al. Step-by-step investigation of degradation mechanisms induced by CMAS attack on YSZ materials for TBC applications[J]. Surface and Coatings Technology, 2013, 237:71-78.
[79] FERGUS J W. Zirconia and pyrochlore oxides for thermal barrier coatings in gas turbine engines[J]. Metallurgical and Materials Transactions E, 2014, 1(2):118-131.
[80] KRÄMER S, FAULHABER S, CHAMBERS M, et al. Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration[J]. Materials Science and Engineering:A, 2008, 490(1-2):26-35.
[81] MECHNICH P, BRAUE W. Solid-state CMAS corrosion of an EB-PVD YSZ coated turbine blade:Zr4+ partitioning and phase evolution[J]. Journal of the American Ceramic Society, 2015, 98(1):296-302.
[82] BOHORQUEZ E, SARLEY B, HERNANDEZ J, et al. Investigation of the effects of CMAS-infiltration in EB-PVD 7% yttria-stabilized zirconia via Raman spectroscopy[C]//2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2018:0096.
[83] VIDAL-SÉTIF M H, RIO C, BOIVIN D, et al. Microstructural characterization of the interaction between 8YPSZ (EB-PVD) thermal barrier coatings and a synthetic CAS[J]. Surface and Coatings Technology, 2014, 239:41-48.
[84] LI L, HITCHMAN N, KNAPP J. Failure of thermal barrier coatings subjected to CMAS attack[J]. Journal of Thermal Spray Technology, 2010, 19(1):148-155.
[85] VIDAL-SETIF M H, CHELLAH N, RIO C, et al. Calcium-magnesium-alumino-silicate (CMAS) degradation of EB-PVD thermal barrier coatings:Characterization of CMAS damage on ex-service high pressure blade TBCs[J]. Surface and Coatings Technology, 2012, 208:39-45.
[86] 王允良, 邓畅光, 詹肇麟, 等. CMAS环境下PS-PVD 7YSZ涂层的抗热冲击性能及失效机制[J]. 金属热处理, 2017, 42(4):175-179. WANG Y L, DENG C G, ZHAN Z L, et al. Thermal shock resistance and failure mechanism of CMAS deposited PS-PVD 7YSZ coating[J]. Heat Treatment of Metals, 2017, 42(4):175-179 (in Chinese).
[87] ZHANG X F, ZHOU K S, LIU M, et al. Adsorbability and spreadability of calcium-magnesium-alumino-silicate (CMAS) on Al-modified 7YSZ thermal barrier coating[J]. Ceramics International, 2016, 42(16):19349-19356.
[88] YAN Z, GUO L, LI Z H, et al. Effects of laser glazing on CMAS corrosion behavior of Y2O3 stabilized ZrO2 thermal barrier coatings[J]. Corrosion Science, 2019, 157:450-461.
[89] FAN W, BAI Y, LIU Y F, et al. Corrosion behavior of Sc2O3-Y2O3 co-stabilized ZrO2 thermal barrier coatings with CMAS attack[J]. Ceramics International, 2019, 45(12):15763-15767.
[90] 杨姗洁, 彭徽, 郭洪波. 热障涂层在CMAS环境下的失效与防护[J]. 航空材料学报, 2018, 38(2):43-51. YANG S J, PENG H, GUO H B. Failure and protection of thermal barrier coating under CMAS attack[J]. Journal of Aeronautical Materials, 2018, 38(2):43-51 (in Chinese).
[91] 张小锋, 周克崧, 宋进兵, 等. 等离子喷涂-物理气相沉积7YSZ热障涂层沉积机理及其CMAS腐蚀失效机制[J]. 无机材料学报, 2015, 30(3):287-293. ZHANG X F, ZHOU K S, SONG J B, et al. Deposition and CMAS corrosion mechanism of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition[J]. Journal of Inorganic Materials, 2015, 30(3):287-293 (in Chinese).
[92] ZHANG B P, SONG W J, GUO H B. Wetting, infiltration and interaction behavior of CMAS towards columnar YSZ coatings deposited by plasma spray physical vapor[J]. Journal of the European Ceramic Society, 2018, 38(10):3564-3572.
[93] SONG W J, YANG S J, FUKUMOTO M, et al. Impact interaction of in-flight high-energy molten volcanic ash droplets with jet engines[J]. Acta Materialia, 2019, 171:119-131.
[94] ZHU W, CHEN H Y, YANG L, et al. Phase field model for diffusion-reaction stress field in the thermal barrier coatings corroded by the molten CMAS[J]. Engineering Failure Analysis, 2020, 111:104486.
[95] ZHOU P F, LI G F, ZHANG Y Q, et al. Infiltration mechanism of Ca-Mg-Al-silicate (CMAS) melt on Yttria stabilized zirconia (YSZ) columnar crystal at high temperature:First-principles research[J]. Applied Surface Science, 2020, 513:145712.
[96] COSTA G, HARDER B J, WIESNER V L, et al. Thermodynamics of reaction between gas-turbine ceramic coatings and ingested CMAS corrodents[J]. Journal of the American Ceramic Society, 2019, 102(5):2948-2964.
[97] ZHENG H Z, CHEN Z, LI G F, et al. High-temperature corrosion mechanism of YSZ coatings subject to calcium-magnesium-aluminosilicate (CMAS) deposits:First-principles calculations[J]. Corrosion Science, 2017, 126:286-294.
[98] NARAPARAJU R, SCHULZ U, MECHNICH P, et al. Degradation study of 7 wt.% yttria stabilised zirconia (7YSZ) thermal barrier coatings on aero-engine combustion chamber parts due to infiltration by different CaO-MgO-Al2O3-SiO2 variants[J]. Surface and Coatings Technology, 2014, 260:73-81.
[99] MACK D E, LAQUAI R, MVLLER B, et al. Evolution of porosity, crack density, and CMAS penetration in thermal barrier coatings subjected to burner rig testing[J]. Journal of the American Ceramic Society, 2019, 102(10):6163-6175.
[100] WU Y Y, LUO H, CAI C Y, et al. Comparison of CMAS corrosion and sintering induced microstructural characteristics of APS thermal barrier coatings[J]. Journal of Materials Science & Technology, 2019, 35(3):440-447.
[101] LOKACHARI S, SONG W J, YUAN J Y, et al. Influence of molten volcanic ash infiltration on the friability of APS thermal barrier coatings[J]. Ceramics International, 2020, 46(8):11364-11371.
[102] RAI A K, BHATTACHARYA R S, WOLFE D E, et al. CMAS-resistant thermal barrier coatings (TBC)[J]. International Journal of Applied Ceramic Technology, 2009, 7(5):662-674.
[103] WANG L, GUO L, LI Z M, et al. Protectiveness of Pt and Gd2Zr2O7 layers on EB-PVD YSZ thermal barrier coatings against calcium-magnesium-alumina-silicate (CMAS) attack[J]. Ceramics International, 2015, 41(9):11662-11669.
[104] GAO L H, GUO H B, GONG S K, et al. Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium-magnesium-alumina-silicate penetration[J]. Journal of the European Ceramic Society, 2014, 34(10):2553-2561.
[105] DREXLER J M, GLEDHILL A D, SHINODA K, et al. Jet engine coatings for resisting volcanic ash damage[J]. Advanced Materials, 2011, 23(21):2419-2424.
[106] KRÄMER S, YANG J, LEVI C G. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts[J]. Journal of the American Ceramic Society, 2008, 91(2):576-583.
[107] BACOS M, DORVAUX J, LANDAIS S. 10 years-activities at Onera on advanced thermal barrier coatings[J]. High Temperature Materials, 2011(3):hal-01183631.
[108] ZHANG B P, SONG W J, WEI L L, et al. Novel thermal barrier coatings repel and resist molten silicate deposits[J]. Scripta Materialia, 2019, 163:71-76.
[109] YANG W Q, YE F X, YAN S, et al. The corrosion behaviors of thermal barrier material of M-YTaO4 attacked by CMAS at 1250℃[J]. Ceramics International, 2020, 46(7):9311-9318.
[110] HAZEL B T, IRENE S, CHRISTINE G, et al. Protection of thermal barrier coating with an impermeable barrier coating:US2006/0115659A1[P]. 2006-06-01.
[111] GLEDHILL A D, REDDY K M, DREXLER J M, et al. Mitigation of damage from molten fly ash to air-plasma-sprayed thermal barrier coatings[J]. Materials Science and Engineering:A, 2011, 528(24):7214-7221.
[112] DREXLER J M, CHEN C H, GLEDHILL A D, et al. Plasma sprayed gadolinium zirconate thermal barrier coatings that are resistant to damage by molten Ca-Mg-Al-silicate glass[J]. Surface and Coatings Technology, 2012, 206(19-20):3911-3916.
[113] CHRISTOPHER W S, KENNEBUNK M. Calcium-magnesium alumino-silicatet (CMAS) resistant thermalbarrier coatings, systems, and methods of production thereof:US10934217 B2[P]. 2021-03-02.
[114] HAZEL B T, GORMAN M, NAGARAJ B A. Protection of thermal barrier coating by a sacrificial coating:US7666528[P]. 2010-02-23.
[115] FANG H J, WANG W Z, HUANG J B, et al. Investigation of CMAS resistance of sacrificial plasma-sprayed mullite-YSZ protective layer on 8YSZ thermal barrier coating[J]. Corrosion Science, 2020, 173:108764.
[116] TAN Z Y, YANG Z H, ZHU W, et al. Mechanical properties and calcium-magnesium-alumino-silicate (CMAS) corrosion behavior of a promising Hf6Ta2O17 ceramic for thermal barrier coatings[J]. Ceramics International, 2020, 46(16):25242-25248.
[117] MOHAN P, YAO B, PATTERSON T, et al. Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation[J]. Surface and Coatings Technology, 2009, 204(6-7):797-801.
[118] SENTURK B S, GARCES H F, ORTIZ A L, et al. CMAS-resistant plasma sprayed thermal barrier coatings based on Y2O3-stabilized ZrO2 with Al3+ and Ti4+ solute additions[J]. Journal of Thermal Spray Technology, 2014, 23(4):708-715.
[119] YIN B B, ZHANG F, ZHU W, et al. Effect of Al2O3 modification on the properties of YSZ:Corrosion resistant, wetting and thermal-mechanical properties[J]. Surface and Coatings Technology, 2019, 357:161-171.
[120] YAN Z, GUO L, ZHANG Z, et al. Versatility of potential protective layer material Ti2AlC on resisting CMAS corrosion to thermal barrier coatings[J]. Corrosion Science, 2020, 167:108532.
[121] ROSENZWEIG L S, RUUD J A, SIVARAMAKRISHNAN S. CMAS resistant thermal barrier coatings:US10179945[P]. 2019-01-15.
[122] YE F X, YUAN Y H, YAN S, et al. High-temperature corrosion mechanism of a promising scandium tantalate ceramic for next generation thermal barrier coating under molten calcium-magnesium-aluminosilicate (CMAS)[J]. Materials Chemistry and Physics, 2020, 256:123679.
Outlines

/