ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Coordinating motion planning for towed cable system in UAV aerial recovery with unmatched envelope
Received date: 2022-05-05
Revised date: 2022-05-30
Accepted date: 2022-06-16
Online published: 2022-06-24
Supported by
National Natural Science Foundation of China(61903190);Aeronautical Science Foundation of China(2019ZA052006);Foundation of Science and Technology on UAV Laboratory(2022-JCJQ-LB-071);Natural Science Foundation of Jiangsu Province of China(BK20190401);China Postdoctoral Science Foundation(2020M681588)
This paper proposes a motion planning method that coordinates mothership movement and cable winch control to stabilize the drogue of the towed cable system during fixed-wing Unmanned Aerial Vehicle (UAV) aerial recovery with unmatched envelope. A multi-link cable-drogue and mothership dynamics model under the airflow disturbances was first established. Two optimal drogue trajectory control problems subject to the physical limits of the mothership and cable were then formulated, considering dynamic constraints of the towed cable and mothership. Next, the hp adaptive Radau pseudospectral method was employed to convert the optimal trajectory control problems into nonlinear programming problems which were then solved by the nonlinear programming solver software SNOPT. Finally, three typical scenarios including mothership motion planning under a quiet atmosphere and constant wind, and coordinating motion planning of mothership movement and cable winch under constant wind were conducted to verify the effectiveness of the proposed method. Numerical results show that the proposed method can well control the drogue trajectory subject to physical limits and wind disturbances.
Zikang SU , Haitong CHEN , Chuntao LI , Zhuolin XING , Honglun WANG . Coordinating motion planning for towed cable system in UAV aerial recovery with unmatched envelope[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(10) : 327377 -327377 . DOI: 10.7527/S1000-6893.2022.27377
1 | 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41(4): 023732. |
WANG X K, LIU Z H, CONG Y R, et al. Miniature fixed-wing UAV swarms: Review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 023732 (in Chinese). | |
2 | 苏子康, 徐忠楠, 李春涛, 等. 伸缩套臂式无人机空基回收建模与对接控制[J]. 航空学报, 2023, 44(1): 326315. |
SU Z K, XU Z N, LI C T, et al. Modeling and docking control of aerial recovery in the form of telescopic boom[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 326315 (in Chinese). | |
3 | SU Z K, LI C T, WU J F, et al. Neuro-adaptive prescribed performance control for aerial-recovery drogue with actuator constraints[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(8): 1451-1465. |
4 | SU Z K, LIU Y H, WANG H L. Probe dynamics direct control for aerial recovery with preassigned docking performance[J/OL]. IEEE Transactions on Aerospace and Electronic Systems(2022-02-16)[2022-05-03]. . |
5 | 曹莉, 耿斌斌, 周亮, 等. 无人机集群发射与回收技术发展研究[J]. 空天防御, 2019, 2(2): 68-72. |
CAO L, GENG B B, ZHOU L, et al. Research on UAVs launch and recovery technology development[J]. Air & Space Defense, 2019, 2(2): 68-72 (in Chinese). | |
6 | SUN L, BEARD R W, COLTON M B. Motion planning and control for mothership-cable-drogue systems in aerial recovery of micro air vehicles[C]∥ Proceedings of the 2010 American Control Conference. Piscataway: IEEE Press, 2010: 2101-2106. |
7 | SUN L. Dynamic modeling, trajectory generation and tracking for towed cable systems[D]. Provo: Brigham Young University, 2012: 19-36. |
8 | NO T S, COCHRAN J E. Dynamics and control of a tethered flight vehicle[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(1): 66-72. |
9 | RO K, KUK T, KAMMAN J. Active control of aerial refueling hose-drogue systems: AIAA-2010-8400[R]. Reston: AIAA, 2010. |
10 | SU Z K, LI C T, LIU Y H. Anti-disturbance dynamic surface trajectory stabilization for the towed aerial recovery drogue under unknown airflow disturbances[J]. Mechanical Systems and Signal Processing, 2021, 150: 107342. |
11 | WILLIAMS P. Optimization of circularly towed cable system in crosswind[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4): 1251-1263. |
12 | WILLIAMS P, SGARIOTO D, TRIVAILO P. Optimal control of an aircraft-towed flexible cable system[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 401-410. |
13 | WILLIAMS P, TRIVAILO P. Dynamics of circularly towed aerial cable systems, Part 2: Transitional flight and deployment control[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 766-779. |
14 | SUN L, BEARD R. Towed body altitude stabilization and states estimation in aerial recovery of micro air vehicles: AIAA-2010-8414[R]. Reston: AIAA, 2010. |
15 | SUN L, HEDENGREN J D, BEARD R W. Optimal trajectory generation using model predictive control for aerially towed cable systems[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(2): 525-539. |
16 | 崔乃刚, 郭冬子, 李坤原, 等. 飞行器轨迹优化数值解法综述[J]. 战术导弹技术, 2020(5): 37-51, 75, 5. |
CUI N G, GUO D Z, LI K Y, et al. A survey of numerical methods for aircraft trajectory optimization[J]. Tactical Missile Technology, 2020(5): 37-51, 75, 5 (in Chinese). | |
17 | 王丽英, 张友安, 赵国荣, 等. 高超声速飞行器再入突防轨迹快速优化[J]. 应用科学学报, 2013, 31(4): 434-440. |
WANG L Y, ZHANG Y A, ZHAO G R, et al. Rapid optimization of penetration trajectory for hypersonic reentry vehicle[J]. Journal of Applied Sciences, 2013, 31(4): 434-440 (in Chinese). | |
18 | 粟建波, 张立丰, 张甲奇. 基于Radau伪谱法的无人作战飞机四维轨迹规划[J]. 飞行力学, 2020, 38(1): 41-45, 53. |
SU J B, ZHANG L F, ZHANG J Q. 4D trajectory planning of UCAV based on Radau pseudo-spectral method[J]. Flight Dynamics, 2020, 38(1): 41-45, 53 (in Chinese). | |
19 | HAN P, SHAN J Y, MENG X Y. Re-entry trajectory optimization using an hp-adaptive Radau pseudospectral method[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2013, 227(10): 1623-1636. |
20 | SU Z K, WANG H L. A novel robust hybrid gravitational search algorithm for reusable launch vehicle approach and landing trajectory optimization[J]. Neurocomputing, 2015, 162: 116-127. |
21 | SU Z K, WANG H L, YAO P. A hybrid backtracking search optimization algorithm for nonlinear optimal control problems with complex dynamic constraints[J]. Neurocomputing, 2016, 186: 182-194. |
22 | 王铀, 赵辉, 惠百斌, 等. 利用Radau伪谱法求解UCAV对地攻击轨迹研究[J]. 电光与控制, 2012, 19(10): 50-53. |
WANG Y, ZHAO H, HUI B B, et al. Air-to-ground trajectory planning for UCAVs using a Radau pseudo-spectral method[J]. Electronics Optics & Control, 2012, 19(10): 50-53 (in Chinese). | |
23 | 黄诘, 张友安, 王丽英. 基于Radau伪谱法的非线性最优控制问题的收敛性[J]. 控制理论与应用, 2014, 31(2): 263-267. |
HUANG J, ZHANG Y A, WANG L Y. Convergence of nonlinear optimal control problem using Radau pseudospectral method[J]. Control Theory & Applications, 2014, 31(2): 263-267 (in Chinese). | |
24 | 王海涛, 李军营, 梁立威, 等. 基于hp自适应Radau伪谱法的再入飞行器轨迹优化[J]. 科学技术与工程, 2015, 15(2): 165-171. |
WANG H T, LI J Y, LIANG L W, et al. Track optimizing for reentry vehicle based on hp-adaptive Radau pseudospectral method[J]. Science Technology and Engineering, 2015, 15(2): 165-171 (in Chinese). | |
25 | ENOMOTO K, YAMASAKI T, TAKANO H, et al. Guidance and control system design for chase UAV: AIAA-2008-6842[R]. Reston: AIAA, 2008. |
26 | 李辉, 龙腾, 孙景亮, 等. 基于自适应视线法的无人机三维航迹跟踪方法[J]. 航空学报, 2022, 43(9): 326105. |
LI H, LONG T, SUN J L, et al. Adaptive line-of-sight method for 3D path following of UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 326105 (in Chinese). | |
27 | WILLIAMS P, LAPTHORNE P, TRIVAILO P. Circularly-towed lumped mass cable model validation from experimental data: AIAA-2006-6817[R]. Reston: AIAA, 2006. |
28 | 王海涛, 董新民, 郭军, 等. 空中加油软管锥套组合体甩鞭现象动力学建模与分析[J]. 航空学报, 2015, 36(9): 3116-3127. |
WANG H T, DONG X M, GUO J, et al. Dynamics modeling and analysis of hose whipping phenomenon of aerial refueling hose-drogue assembly[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 3116-3127 (in Chinese). | |
29 | WILLIAMS P, TRIVAILO P. Dynamics of circularly towed aerial cable systems, Part I: Optimal configurations and their stability[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 753-765. |
/
〈 |
|
〉 |