Material Engineering and Mechanical Manufacturing

Trajectory optimization of robot-assisted flexible flanging

  • Xuan CHENG ,
  • Yixi ZHAO ,
  • Shuman YOU
Expand
  • 1.Shanghai Key Laboratory of Digital Manufacture for Thin?Walled Structures,Shanghai Jiaotong University,Shanghai  200240,China
    2.AECC Commercial Aircraft Engine Co. ,Ltd,Shanghai  200241,China
E-mail: yxzhao@sjtu.edu.cn

Received date: 2021-12-31

  Revised date: 2022-01-25

  Accepted date: 2022-03-13

  Online published: 2022-06-08

Supported by

National Key Research and Development Program of China(2020YFA0711102);Joint Innovation Fund of CALT(CALT201809)

Abstract

A certain edge or multiple edges with curved flanged sheet metal parts are widely used in aerospace. The use of robot-assisted flexible flanging technology can overcome the limitations of traditional manual forming such as high labor intensity, low efficiency, and difficulty in guaranteeing the consistency and reliability of product quality, and realize the rapid and accurate forming of multi-passes and small-patch flanged sheet metal parts. However, robot-assisted flexible flanging technology is a trajectory-controlled local loading forming technology, which is prone to such defects as free end collapse and springback during the forming process. Combined finite element simulation with experiment, the mechanism of collapse formation in the flexible flanging process is analyzed; the robot flexible flanging trajectory optimization is then studied. The results of the study show that the rolling-in trajectory of the forming roller has the greatest influence on the free end collapse of the flanged part, and the best improvement effect is achieved when the free end pre-forming scheme is selected and the distance from the rolling-in point to the free end is 20 mm. Based on the optimized forming roller rolling-in and rolling-out trajectory, the flanged parts can be obtained without free end collapse, and the error of the flanging opening angle and the fillet radius is less than 0.5° and 0.5 mm, respectively.

Cite this article

Xuan CHENG , Yixi ZHAO , Shuman YOU . Trajectory optimization of robot-assisted flexible flanging[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(4) : 426886 -426886 . DOI: 10.7527/S1000-6893.2022.26886

References

1 LóPEZ J A, CENTENO G, MARTíNEZ A J, et al. Stretch-flanging of AA2024-T3 sheet by single-stage SPIF [J]. Thin-Walled Structures2021160: 107338.
2 CAO T, LU B, OU H, et al. Investigation on a new hole-flanging approach by incremental sheet forming through a featured tool [J]. International Journal of Machine Tools and Manufacture2016110: 1-17.
3 XU F, LIN Z Q, LI S H, et al. Study on the influences of geometrical parameters on the formability of stretch curved flanging by numerical simulation [J]. Journal of Materials Processing Technology2004145(1): 93-98.
4 HU P, LI D Y, LI Y X. Analytical models of stretch and shrink flanging [J]. International Journal of Machine Tools & Manufacture200343(13): 1367-1373.
5 ZHANG G, YAO J, HU S J, et al. Shrink flanging with surface contours [J]. Journal of Manufacturing Processes20035(2): 143-153.
6 LIVATYALI H, WU H C, ALTAN T. Prediction and elimination of springback in straight flanging using computer-aided design methods Part 2: FEM predictions and tool design [J]. Journal of Materials Processing Technology2002120(1-3): 348-354.
7 LIN H S, LEE C Y, WU C H. Hole flanging with cold extrusion on sheet metals by FE simulation [J]. International Journal of Machine Tools and Manufacture200747(1): 168-174.
8 GOLOVASHCHENKO S F. Sharp flanging and flat hemming of aluminum exterior body panels [J]. Journal of Materials Engineering and Performance200514(4): 508-515.
9 BURANATHITI T, CAO J. An effective analytical model for springback prediction in straight flanging processes [J]. International Journal of Materials & Product Technology200421(1-3): 137-153.
10 崔笑蕾, 詹梅, 高鹏飞, 等. 虑及板坯几何和性能波动的薄壁件塑性成形数值模拟研究进展 [J]. 航空学报202142(10): 525145.
  CUI X L, ZHAN M, GAO P F, et al. Advances in numerical simulation of plastic forming of thin walled components considering blank geometry and performance fluctuation [J]. Acta Aeronautica et Astronautica Sinica202142(10): 525145 (in Chinese).
11 GU Z, WANG G, YU G. Investigation on fracture of a 6014-T4 aluminum alloy sheet in the flanging and hemming process based on numerical and experimental methods [J]. Metals202010(1): 1-14.
12 HAN K, LI X Q, PENG X Y, et al. Experimental and numerical study on the deformation mechanism of straight flanging by incremental sheet forming [J]. International Journal of Mechanical Sciences2019160: 75-89.
13 EFTHYMIADIS P, HAZRA S, CLOUGH A, et al. Revealing the mechanical and microstructural performance of multiphase steels during tensile, forming and flanging operations [J]. Materials Science and Engineering: A2017701: 174-186.
14 CHEN L, CHEN H Q, WANG Q Y, et al. Studies on wrinkling and control method in rubber forming using aluminium sheet shrink flanging process [J]. Materials & Design201565: 505-510.
15 WEN T, ZHANG S, ZHENG J, et al. Bi-directional dieless incremental flanging of sheet metals using a bar tool with tapered shoulders [J]. Journal of Materials Processing Technology2016229: 795-803.
16 SU H, HUANG L, LI J, et al. Two-step electromagnetic forming: A new forming approach to local features of large-size sheet metal parts [J]. International Journal of Machine Tools and Manufacture2018124: 99-116.
17 RAJAK A K, KORE S D. Experimental investigation of aluminium–copper wire crimping with electromagnetic process: Its advantages over conventional process [J]. Journal of Manufacturing Processes201726: 57-66.
18 YU H, ZHENG Q, WANG S, et al. The deformation mechanism of circular hole flanging by magnetic pulse forming [J]. Journal of Materials Processing Technology2018257: 54-64.
19 KUMAR S, AHMED M, PANTHI S K. Effect of punch profile on deformation behaviour of AA5052 sheet in stretch flanging process [J]. Archives of Civil and Mechanical Engineering202020(18): 1-17.
20 章绍昆, 毕庆贞, 王宇晗. 镜像铣削加工奇异区域刀具路径优化 [J]. 航空学报202142(10): 524591.
  ZHANG S K, BI Q Z, WANG Y H. Too path optimization for mirror milling in singular area [J]. Acta Aeronautica et Astronautica Sinica202142(10): 524591 (in Chinese).
21 徐勇, 尹阔, 夏亮亮, 等 面向航空铝合金薄壁深腔构件的冲击液压成形工艺优化 [J]. 航空学报202142(10): 524831.
  XU Y, YIN K, XIA L L, et al. Optimization of impact hydroforming process for aeronautical components of aluminum alloy sheets with thin wall and deep cavity [J]. Acta Aeronautica et Astronautica Sinica202142(10): 524831 (in Chinese).
22 BORREGO M, MORALES-PALMA D, MARTINEZ-DONAIRE A J, et al. Experimental study of hole-flanging by single-stage incremental sheet forming [J]. Journal of Materials Processing Technology2016237: 320-330.
23 DEWANG Y, PANTHI S K, HORA M S. Binder force effect on stretch flange forming of aluminum alloy [J]. Materials and Manufacturing Processes201934(13): 1516-1527.
24 DEWANG Y, HORA M S, PANTHI S K. Prediction of crack location and propagation in stretch flanging process of aluminum alloy AA-5052 sheet using FEM simulation [J]. Transactions of Nonferrous Metals Society of China201525(7): 2308-2320.
25 LE PORT A, THUILLIER S, MANACH P Y. Characterization of surface defects after flanging of metallic sheets [J]. Journal of Materials Processing Technology2011211(12): 2062-2071.
26 HAMEDON Z, ABE Y, MORI K. Improvement of formability of high strength steel sheets in shrink flanging[C]∥IOP Conference Series: Materials Science and Engineering, 2016114(1): 012001.
27 胡逸辉, 李杰, 赵亦希, 等. 机器人柔性翻边新工艺 [J]. 机械设计与研究202036(3): 100-110.
  HU Y H, LI J, ZHAO Y X, et al. New process for robot flexible flanging [J]. Machine Design and Research202036(3): 100-110 (in Chinese).
28 尤舒曼, 李杰, 赵亦希, 等. 柔性翻边成形工艺参数研究 [J]. 上海交通大学学报202155(10): 1246-1254.
  YOU S M, LI J, ZHAO Y X, et al. Process parameters of flexible flanging [J]. Journal of Shanghai Jiaotong University202155(10): 1246-1254 (in Chinese).
Outlines

/