Articles

Simulation and experiment of natural laminar flow flight test wing glove

  • WANG Hao ,
  • ZHONG Min ,
  • HUA Jun ,
  • ZHONG Hai ,
  • YANG Tihao ,
  • WANG Meng ,
  • LEI Guodong
Expand
  • 1. Department of Technology Ⅱ, Chinese Aeronautical Establishment, Beijing 100012, China;
    2. AVIC Aeronautical Science and Technology Key Laboratory of Flight Simulation, CETE, Xi'an 710089, China;
    3. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    4. Aero Science Key Lab of High Reynolds Aerodynamics Force of High Speed, AVIC Aerodynamics Research Institute, Shenyang 110034, China

Received date: 2021-12-08

  Revised date: 2022-02-21

  Online published: 2022-04-12

Abstract

The development of green aviation has drawn increasing attention, while drag reduction by laminar flow region expansion is an important means to achieve energy conservation and emission reduction. This study simulates the wind tunnel and flight tests of a natural laminar flow wing glove by the numerical simulation method considering transition judgement. The pressure coefficient distribution of numerical simulation is consistent with that of the wind tunnel test, and the change in the transition location with angle of attack in numerical simulation is basically consistent with that in the wind tunnel test at atmospheric pressure. When the static pressure calculated from the flight height measured by the air data system, instead of that at the nose and the maximum cross section of the fuselage, is used as the reference pressure, the pressure coefficient distribution obtained from the flight test is more consistent with the simulation results. The transition positions of the wing glove obtained by numerical simulation in the design state and typical non-design state are in good agreement with that of the flight test. The momentum method is used to calculate the drag coefficient of the wing glove section, and the difference in drag coefficient reduction from the natural laminar flow between the numerical simulation and the flight test is smaller than 0.000 2.

Cite this article

WANG Hao , ZHONG Min , HUA Jun , ZHONG Hai , YANG Tihao , WANG Meng , LEI Guodong . Simulation and experiment of natural laminar flow flight test wing glove[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(11) : 526785 -526785 . DOI: 10.7527/S1000-6893.2022.26785

References

[1] IATA. Aircraft technology roadmap to 2050[EB/OL]. (2019.12.11)[2021.4.1]. https://www.iata.org/contentassets/8d19e716636a47c184e7221c77563c93/Technology-roadmap-2050.pdf.
[2] SCHRAUF G. Status and perspectives of laminar flow[J]. The Aeronautical Journal, 2005, 109(1102):639-644.
[3] 朱自强, 吴宗成, 丁举春. 层流流动控制技术及应用[J]. 航空学报, 2011, 32(5):765-784. ZHU Z Q, WU Z C, DING J C. Laminar flow control technology and application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):765-784(in Chinese).
[4] 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7):2065-2090. ZHU Z Q, JU S J, WU Z C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese).
[5] SMITH A M O, GAMBERONI N. Transition, pressure gradient and stability theory[M]. Long Beach:Douglas, 1956.
[6] 杨体浩, 白俊强, 史亚云, 等. 考虑吸气分布影响的HLFC机翼优化设计[J]. 航空学报, 2017, 38(12):121158. YANG T H, BAI J Q, SHI Y Y, et al. Optimization design for HLFC wings considering influence of suction distribution[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121158(in Chinese).
[7] 魏闯, 张铁军, 钱战森. 基于eN转捩预测方法的增升装置失速特性数值模拟研究[J]. 航空科学技术, 2019, 30(9):33-39. WEI C, ZHANG T J, QIAN Z S. Number simulation on stall characteristic for high-lift configuration based on eN transition method[J]. Aeronautical Science & Technology, 2019, 30(9):33-39(in Chinese).
[8] ABU-GHANNAM B J, SHAW R. Natural transition of boundary layers-The effects of turbulence, pressure gradient, and flow history[J]. Journal of Mechanical Engineering Science, 1980, 22(5):213-228.
[9] WILCOX D C. Simulation of transition with a two-equation turbulence model[J]. AIAA Journal, 1994, 32(2):247-255.
[10] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-Part Ⅰ:Model formulation[J]. Journal of Turbomachinery, 2006, 128(3):413-422.
[11] LANGTRY R B, MENTER F R, LIKKI S R, et al. A correlation-based transition model using local variables-Part Ⅱ:Test cases and industrial applications[J]. Journal of Turbomachinery, 2006, 128(3):423-434.
[12] 史亚云, 白俊强, 华俊, 等. 基于当地变量的横流转捩预测模型的研究与改进[J]. 航空学报, 2016, 37(3):780-789. SHI Y Y, BAI J Q, HUA J, et al. Study and modification of cross-flow induced transition model based on local variables[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):780-789(in Chinese).
[13] RIVERS M B, LYNDE M N, CAMPBELL R L, et al. Experimental investigation of the NASA common research model with a natural laminar flow wing in the NASA Langley National Transonic Facility[C]//AIAA Scitech 2019 Forum, 2019:2189.
[14] LYNDE M N, CAMPBELL R L, RIVERS M B, et al. Preliminary results from an experimental assessment of a natural laminar flow design method[C]//AIAA Scitech 2019 Forum, 2019:2298.
[15] 王妙香, 王元元. 民用飞机总体技术研究进展[M]//孙侠生. 绿色航空技术研究与进展. 北京:航空工业出版社, 2020:27-44. WANG M X, WANG Y Y. Research progress of civil aircraft general technology[M]//SUN X S. Research and Progress of Green Aviation Technology. Beijing:Aviation Industry Press, 2020:27-44(in Chinese).
[16] MADDALON D V. Hybrid laminar-flow control flight research:NASA TM-4331:47[R]. Washington, D.C.:NASA, 1991.
[17] BELISLE M J, ROBERTS M W, WILLIAMS T C, et al. A transonic laminar-flow wing glove flight experiment:Overview and design optimization[C]//30th AIAA Applied Aerodynamics Conference, 2012:2667.
[18] ROBERTS M W, REED H L, SARIC W S. A transonic laminar-flow wing glove flight experiment:Computational evaluation and linear stability[C]//30th AIAA Applied Aerodynamics Conference, 2012:2668.
[19] YOUNG T, MAHONY B, HUMPHREYS B, et al. Durability of hybrid laminar flow control (HLFC) surfaces[J]. Aerospace Science and Technology, 2003, 7(3):181-190.
[20] FUJION M. Design and development of the HondaJet[J]. Journal of Aircraft, 2005, 42(3):755-764.
[21] FUJION M, YOSHIZAKI Y, KAWAMURA Y. Natural-laminar-flow airfoil development for a lightweight business jet[J]. Journal of Aircraft, 2003, 40(4):609-615.
[22] 张彦军, 段卓毅, 雷武涛, 等. 超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验[J]. 航空学报, 2019, 40(4):122429. ZHANG Y J, DUAN Z Y, LEI W T, et al. Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122429(in Chinese).
[23] 艾梦琪, 段卓毅, 张健, 等. 高亚声速层流翼型转捩数值模拟及试验研究[J]. 飞行力学, 2020, 38(6):77-81, 94. AI M Q, DUAN Z Y, ZHANG J, et al. Numerical simulation and test on transition of a high subsonic laminar airfoil[J]. Flight Dynamics, 2020, 38(6):77-81, 94(in Chinese).
[24] 王猛, 钟海, 衷洪杰, 等. 红外热像边界层转捩探测的飞行试验应用研究[J]. 空气动力学学报, 2019, 37(1):160-167. WANG M, ZHONG H, ZHONG H J, et al. Flight test applications of boundary transition detection method using IR technique[J]. Acta Aerodynamica Sinica, 2019, 37(1):160-167(in Chinese).
[25] 钟海, 王猛, 王启. 边界层转捩红外探测试飞技术研究[J]. 红外技术, 2019, 41(8):712-718. ZHONG H, WANG M, WANG Q. IR technique investigation of boundary layer transition measurement in flight tests[J]. Infrared Technology, 2019, 41(8):712-718(in Chinese).
[26] 钟海. 层流飞行试验迎角精确控制技术研究[J]. 飞行力学, 2020, 38(3):82-86. ZHONG H. Investigation for precise angle-of-attack control technique of laminar flow flight test[J]. Flight Dynamics, 2020, 38(3):82-86(in Chinese).
[27] SHI Y Y, MADER C A., HE S C, et al. Natural laminar-flow airfoil optimization design using a discrete adjoint approach[J]. AIAA Journal, 2020, 58(11):4702-4722.
[28] 周伟, 张正科, 屈科, 等. 翼型阻力计算方法的数值模拟研究[J]. 科学技术与工程, 2011, 11(33):8229-8237. ZHOU W, ZHANG Z K, QU K, et al. Numerical simulation study of the airfoil drag prediction methods[J]. Science Technology and Engineering, 2011, 11(33):8229-8237(in Chinese).
Outlines

/