Solid Mechanics and Vehicle Conceptual Design

Remaining useful life prediction based on multi-scale adaptive attention network

  • Bin LIU ,
  • Jing XU ,
  • Meiling HUO ,
  • Xueying CUI ,
  • Xiufeng XIE ,
  • Donghui YANG ,
  • Jia WANG
Expand
  • School of Applied Science,Taiyuan University of Science and Technology,Taiyun 030024,China

Received date: 2022-01-10

  Revised date: 2022-03-11

  Accepted date: 2022-03-29

  Online published: 2022-04-06

Supported by

National Natural Science Foundation of China(11701406);Fundamental Research Program of Shanxi Province(202103021224274);Research Project Supported by Shanxi Scholarship Council of China(2022-163);Social and Economic Statistical Research Project in Shanxi Province(KY[2022]73)

Abstract

Remaining useful life prediction is the key to and premise of intelligent maintenance decision-making of complex equipment systems. The potential relationship among different index data brings challenges to prediction accuracy, while parameter selection also increases model prediction difficulty. We use the multi-scale adaptive attention network method to fuse the feature relationship among data from vertical and horizontal dimensions, respectively, and give the piecewise nonlinear target function to improve the prediction accuracy and reduce the root mean square error. The adaptive mechanism is employed to automatically select the size of convolution kernel, improving the efficiency of network training. Empirical analysis of Company-Modular aero-propulsion system simulation data sets prove the effectiveness of this method in remaining useful life prediction of complex systems.

Cite this article

Bin LIU , Jing XU , Meiling HUO , Xueying CUI , Xiufeng XIE , Donghui YANG , Jia WANG . Remaining useful life prediction based on multi-scale adaptive attention network[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(5) : 226918 -226918 . DOI: 10.7527/S1000-6893.2022.26918

References

1 沈保明, 陈保家, 赵春华, 等. 深度学习在机械设备故障预测与健康管理中的研究综述[J]. 机床与液压202149(19): 162-171.
  SHEN B M, CHEN B J, ZHAO C H, et al. Review on the research of deep learning in mechanical equipment fault prognostics and health management[J]. Machine Tool & Hydraulics202149(19): 162-171 (in Chinese).
2 许艳雷, 邱明, 李军星, 等. 基于SKF-KF-Bayes的滚动轴承剩余使用寿命预测方法[J]. 振动与冲击202140(19): 26-31, 40.
  XU Y L, QIU M, LI J X, et al. Remaining useful life prediction method of rolling bearing based on SKF-KF-Bayes[J]. Journal of Vibration and Shock202140(19): 26-31, 40 (in Chinese).
3 DAI Y, CHENG S, GAN Q J, et al. Life prediction of Ni-Cd battery based on linear Wiener process[J]. Journal of Central South University202128(9): 2919-2930.
4 WANG Y D, ZHAO Y F, ADDEPALLI S. Remaining useful life prediction using deep learning approaches: A review[J]. Procedia Manufacturing202049: 81-88.
5 SATEESH BABU G, ZHAO P L, LI X L. Deep convolutional neural network based regression approach for estimation of remaining useful life[J]. International Conference on Database Systems for Advanced Applications20169642: 214-228.
6 LI X, DING Q, SUN J Q. Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering & System Safety2018172: 1-11.
7 SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]∥ 2008 International Conference on Prognostics and Health Management. Piscataway: IEEE Press, 2008: 10423504.
8 SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]∥ 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2015: 1-9.
9 LI H. Remaining useful life prediction using multi-scale deep convolutional neural network[J]. Applied Soft Computing202089: 106113.
10 LIM P, GOH C K, TAN K C, et al. Estimation of remaining useful life based on switching Kalman filter neural network ensemble[J]. Annual Conference of the Prognostics and Health Management Society20146(1): 1-9.
11 ZHENG S, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation[C]∥ 2017 IEEE International Conference on Prognostics and Health Management. Piscataway: IEEE Press, 2017: 88-95.
12 GUO L, LI N, JIA F, et al. A recurrent neural network based health indicator for remaining useful life prediction of bearings[J]. Neurocomputing2017240: 98-109.
13 HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation19979(8): 1735-1780.
14 CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[DB/OL]. arXiv preprint: 1406.1078, 2014.
15 CHEN J L, JING HJ, CHANG Y H, et al. Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process[J]. Reliability Engineering & System Safety2019185: 372-382.
16 MA M, MAO Z. Deep-convolution-based LSTM network for remaining useful life prediction[J]. IEEE Transactions on Industrial Informatics202117(3): 1658-1667.
17 刘畅, 陈雯柏. 一种基于MSDCNN-LSTM的设备RUL预测方法[J]. 西北工业大学学报202139(2): 407-413.
  LIU C, CHEN W B. A RUL prediction method of equipments based on MSDCNN-LSTM[J]. Journal of Northwestern Polytechnical University202139(2): 407-413 (in Chinese).
18 KHAN S, YAIRI T. A review on the application of deep learning in system health management[J]. Mechanical Systems and Signal Processing2018107: 241-265.
19 PILLAI S, VADAKKEPAT P. Two stage deep learning for prognostics using multi-loss encoder and convolutional composite features[J]. Expert Systems with Applications2021171: 114569.
20 HEIMES F O. Recurrent neural networks for remaining useful life estimation[C]∥ 2008 International Conference on Prognostics and Health Management. Piscataway: IEEE Press, 2008: 10423512.
21 ZHU H G, ZENG H, LIU J, et al. Logish: A new nonlinear nonmonotonic activation function for convolutional neural network[J]. Neurocomputing2021458: 490-499.
22 WANG Q L, WU B G, ZHU P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks[C]∥ 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 11531-11539.
23 KINGMA D P, BA J L. Adam: A method for stochastic optimization[DB/OL]. arXiv preprint: 1412.6980, 2014.
24 WANG B, LEI Y, LI N, et al. Deep separable convolutional network for remaining useful life prediction of machinery[J]. Mechanical Systems and Signal Processing2019134: 106330.
Outlines

/