Reviews

Technological development in hypersonic nozzle design, manufacture and validation: A review

  • LIN Peng ,
  • ZHUANG Fujian ,
  • QU Linfeng ,
  • XU Yangyang ,
  • SU Yadong
Expand
  • 1. Chinese Aeronautical Establishment, Beijing 100029, China;
    2. Yangzhou CIRI, AVIC Shenyang Aircraft Design & Research Institute, Yangzhou 225000, China;
    3. AVIC Shenyang Aircraft Design & Research Institute, Shenyang 110035, China

Received date: 2021-07-27

  Revised date: 2022-03-08

  Online published: 2022-03-04

Abstract

Development of hypersonic aircraft, one of the most important flight vehicles in the near-space domain, is of critical significance. The nozzle is the main part in generating thrust in hypersonic aircraft, with its performance and reliability directly affecting the whole aircraft. Focusing on the hypersonic aircraft nozzle technology, this paper analyzes nozzles of the turbine engine, rocket, and ramjet in their classification and technical features, summarizes the state-of-the-art of the nozzle technology, presenting the key technologies of nozzle structure, include design and optimization, material and manufacturing, and comprehensive validation. Important challenges and development suggestions in the future were finally provided.

Cite this article

LIN Peng , ZHUANG Fujian , QU Linfeng , XU Yangyang , SU Yadong . Technological development in hypersonic nozzle design, manufacture and validation: A review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(6) : 526160 -526160 . DOI: 10.7527/S1000-6893.2022.26160

References

[1] 《航空发动机设计手册》总编委会. 航空发动机设计手册. 第7册. 进排气装置[M]. 北京:航空工业出版社, 2001. Aeroengine Design Manual Editorial Board. Aeroengine Design Manual. Volume 7. Inlet and nozzle[M]. Beijing:Aviation Industry Press, 2001(in Chinese).
[2] 《飞机设计手册》总编委会. 飞机设计手册. 第13册. 动力装置系统设计[M]. 北京:航空工业出版社, 2006. Aircraft Design Manual Editorial Board. Aircraft Design Manual. Volume 13. Engine system design[M]. Beijing:Aviation Industry Press, 2006(in Chinese).
[3] 孙冰, 张建伟. 火箭发动机热防护技术[M]. 北京:北京航空航天大学出版社, 2016. SUN B, ZHANG J W. Thermal protection technology of rocket engine[M]. Beijing:Beihang University Press, 2016(in Chinese).
[4] 约翰·霍普金斯大学应用物理实验所. 冲压发动机技术(上册)[M]. 李存杰, 王树声,李济众,等. 译. 北京:国防工业出版社, 1987. The Johns Hopkins University Applied Physics Laboratory. Scramjet engine (Volume 1)[M]. LI C J, WANG S S, LI J Z, et al. translated. Beijing:National Defense Industry Press, 1987(in Chinese).
[5] 徐旭, 陈兵, 徐大军. 冲压发动机原理及技术[M]. 北京:北京航空航天大学出版社, 2014. XU X, CHEN B, XU D J. Principle and technology of scramjet[M]. Beijing:Beihang University Press, 2014(in Chinese).
[6] 季鹤鸣, 龚正真, 邵万仁, 等. 喷管与机后体一体化设计初探[J]. 航空发动机, 2008, 34(2):27-29, 35. JI H M, GONG Z Z, SHAO W R, et al. Preliminary investigated of integrated design for nozzle and aircraft afterbody[J]. Aeroengine, 2008, 34(2):27-29, 35(in Chinese).
[7] 王占学, 刘帅, 周莉. S/VTOL战斗机用推力矢量喷管技术的发展及关键技术分析[J]. 航空发动机, 2014, 40(4):1-6. WANG Z X, LIU S, ZHOU L. Development and critical technology analysis on thrust vector technology of short/vertical take-off and landing fighter[J]. Aeroengine, 2014, 40(4):1-6(in Chinese).
[8] 汪运鹏, 姜宗林. 高超声速喷管设计理论与方法[J]. 力学进展, 2021, 51(2):257-294. WANG Y P, JIANG Z L. A review of theories and methods for hypersonic nozzle design[J]. Advances in Mechanics, 2021, 51(2):257-294(in Chinese).
[9] 徐惊雷, 莫建伟, 于洋. 高速飞行器的发动机排气系统[M]. 北京:国防工业出版社, 2019. XU J L, MO J W, YU Y. Exhaust system of high speed vehicle engine[M]. Beijing:National Defense Industry Press, 2019(in Chinese).
[10] 李崇俊, 闫联生, 崔红. 航天飞行器热防护系统技术综述[J]. 高科技纤维与应用, 2014, 39(1):19-25, 35. LI C J, YAN L S, CUI H. A review on thermal protection system for aerospace vehicles[J]. Hi-Tech Fiber & Application, 2014, 39(1):19-25, 35(in Chinese).
[11] 叶正寅, 吕广亮. 火箭发动机喷管非定常侧向力和流固耦合研究进展[J]. 航空工程进展, 2015, 6(1):1-12. YE Z Y, LV G L. Advances in the study of unsteady side-loads and fluid/structure interaction of rocket nozzles[J]. Advances in Aeronautical Science and Engineering, 2015, 6(1):1-12(in Chinese).
[12] 胡海峰, 鲍福廷, 王艺杰, 等. 喷管分离流流动-热-结构顺序耦合数值模拟及试验研究[J]. 宇航学报, 2011, 32(7):1534-1541. HU H F, BAO F T, WANG Y J, et al. Nozzle flow separation fluid-thermal-structure load transfer coupled analysis and test research[J]. Journal of Astronautics, 2011, 32(7):1534-1541(in Chinese).
[13] 王书贤. 几何可调喷管的结构特点及发展[J]. 兵器装备工程学报, 2018, 39(1):6-13. WANG S X. Review on structural characteristics and development of geometric variable nozzle[J]. Journal of Ordnance Equipment Engineering, 2018, 39(1):6-13(in Chinese).
[14] 魏建生. 高效异型气膜冷却结构流动与换热特性研究[D]. 西安:西北工业大学, 2018. WEI J S. Study on the flow and heat transfer characteristics of high efficiency shaped film cooling structures[D]. Xi'an:Northwestern Polytechnical University, 2018(in Chinese).
[15] MAISONNEUVE Y. Ablation of solid-fuel booster nozzle materials[J]. Aerospace Science and Technology, 1997, 1(4):277-289.
[16] 宋学智, 李长德, 魏化震. 固体火箭发动机喷管用烧蚀隔热材料研究进展[J]. 弹箭技术, 1998(4):11-21. SONG X Z, LI C D, WEI H Z. Advance of researching of ablative and thermal insulating materials used in the solid rocket motor nozzle[J]. Projectile and rocket technology, 1998(4):11-21(in Chinese).
[17] 苏君明. 火箭喷管多晶石墨的研究[C]//第18届炭-石墨学术会议论文集, 2000:409-414. SU J M. Research on rocket nozzle polycrystalline graphite[C]//Proceedings of the 18th Carbon-Graphite Conference, 2000:409-414(in Chinese).
[18] 冉宏星, 崔红, 郝志彪, 等. 几种喉衬材料断裂韧性的比较[J]. 新型炭材料, 2002, 17(1):30-35. RAN H X, CUI H, HAO Z B, et al. The fracture toughness of several rocket nozzle throat materials[J]. New Carbon Materials, 2002, 17(1):30-35(in Chinese).
[19] 陈华辉, 邓海金, 李明, 等. 现代复合材料[M]. 北京:中国物资出版社, 1998. CHEN H H, DENG H J, LI M, et al. Modern composite material[M]. Beijing:China Materials Press, 1998(in Chinese).
[20] 王零森. 钨基复合材料自冷发汗机理研究[J]. 中南矿冶学院学报, 1983, 14(1):8-16. WANG L S. On the mechanism of self-cooling in tungsten-base composite materials[J]. Journal of Central South Institute of Mining and Metallurgy, 1983, 14(1):8-16(in Chinese).
[21] 陈正求, 李世英. 钨铜复合材料的发展[J]. 钨铝科技, 1984, 10(3):7-18. CHEN Z Q, LI S Y. Development of tungsten copper composite materials[J]. Tungsten Aluminum Technology, 1984, 10(3):7-18(in Chinese).
[22] 史可顺, 林济福. 生焦基石墨的特性和显微结构[J]. 宇航材料工艺, 1982, 12(5):6-10. SHI K S, LIN J F. Characteristics and micro-structure of raw Joulous graphite[J]. Aerospace Materials & Technology, 1982, 12(5):6-10(in Chinese).
[23] 何洪庆, 周旭. 石墨渗铜材料的烧蚀模型探索[J]. 固体火箭技术, 1991, 14(4):102-107. HE H Q, ZHOU X. Exploration of ablation model of graphite copper-permeable materials[J]. Journal of Solid Rocket Technology, 1991, 14(4):102-107(in Chinese).
[24] 孙百顺. 喉衬用钨渗铜制品质量的控制[J]. 固体火箭技术, 1994(1):75-78. SUN B S. Quality control of the copper sintered tungsten products for throat insert[J]. Journal of Solid Rocket Technology, 1994(1):75-78(in Chinese).
[25] 王书贤, 陈林泉, 苏君明, 等. 石墨渗铜喉衬材料的抗热震性能与烧蚀微观结构研究[J]. 科学技术与工程, 2004, 4(3):206-210. WANG S X, CHEN L Q, SU J M, et al. Thermal shock resistance of copper-impregnated graphite throat insert and the erosive microscopic structure[J]. Science Technology and Engineer, 2004, 4(3):206-210(in Chinese).
[26] 苏君明. 石墨渗铜喉衬材料抗热震性能评价[J]. 新型碳材料, 1998, 13(3):21-26. SU J M. Evaluation on the property of thermal shock resistance of copper impregnated graphite throat liner material[J]. New Carbon Materials, 1998, 13(3):21-26(in Chinese).
[27] 陈林泉, 王书贤, 张胜勇, 等. 石墨渗铜喉衬材料烧蚀机理分析[J]. 固体火箭技术, 2004, 27(1):57-59. CHEN L Q, WANG S X, ZHANG S Y, et al. Study on the erosion mechanism of copper-infiltrated graphite throat insert[J]. Journal of Solid Rocket Technology, 2004, 27(1):57-59(in Chinese).
[28] 苏君明, 陈林泉, 王书贤, 等. 石墨渗铜喉衬的烧蚀特性[J]. 固体火箭技术, 2004, 27(1):69-72. SU J M, CHEN L Q, WANG S X, et al. The erosive property of copper-infiltrated graphite throat insert[J]. Journal of Solid Rocket Technology, 2004, 27(1):69-72(in Chinese).
[29] 陈军, 王政时, 董师颜. 钨渗铜材料喷管在长时间续航下的沉积特性[J]. 兵工学报, 2001, 22(3):426-428. CHEN J, WANG Z S, DONG S Y. Sediment properties of copper-sintered-wolfram nozzle with long-range sustained flight in solid rocket missiles[J]. Acta Armamentarii, 2001, 22(3):426-428(in Chinese).
[30] 尹健, 张红波, 熊翔, 等. 针刺整体毡C/C复合材料整体喉衬烧蚀分析[J]. 中国有色金属学报, 2006, 16(9):1539-1544. YIN J, ZHANG H B, XIONG X, et al. Analysis on ablation performance of bulk-needled-felt reinforced carbon composites throat[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(9):1539-1544(in Chinese).
[31] 苏君明. 高效高冲质比C/C喷管的应用与进展[J]. 新型碳材料, 1996, 11(4):18-23. SU J M. Application and progress of high efficiency and high-mass ratio C/C nozzle[J]. New Carbon Materials, 1996, 11(4):18-23(in Chinese).
[32] 黄坚定, 唐菊花. 国外大型团体发动机喷管性能分析[J]. 固体火箭技术, 1996, 19(2):9-16. HUANG J D, TANG J H. Analysis of performance of foreign large-scale solid rocket nozzles[J]. Journal of Solid Rocket Technology, 1996, 19(2):9-16(in Chinese).
[33] CHEN J X, XIONG X, HUANG Q Z, et al. Densification mechanism of chemical vapor infiltration technology for carbon/carbon composites[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(3):519-522.
[34] CANFEILD A A. Braided carbon/carbon nozzle development[C]//21 st AIAA/SAE/ASME/ASEE Joint Propulsion Conference, 1985.
[35] BUSSIERE M, PREL M. Ariane V solid rocket booster nozzle development status[C]//30th Joint Propulsion Conference and Exhibit, 1994.
[36] 朱良杰, 廖东娟. C/C复合材料在美国导弹上的应用[J]. 宇航材料工艺, 1993, 23(4):12-14. ZHU L J, LIAO D J. Application of C/C composite materials in US missiles[J]. Aerospace Materials & Technology, 1993, 23(4):12-14(in Chinese).
[37] 苏君明. C/C喉衬材料的研究与发展[J]. 炭素科技, 2001(1):6-11. SU J M. Research and development of C/C throat lining materials[J]. Carbon Science and Technology, 2001(1):6-11(in Chinese).
[38] 宋桂明, 周玉, 王玉金, 等. 固体火箭发动机喉衬材料[J]. 固体火箭技术, 1998, 21(2):51-55, 61. SONG G M, ZHOU Y, WANG Y J, et al. Throat materials for solid rocket motors[J]. Journal of Solid Rocket Technology, 1998, 21(2):51-55, 61(in Chinese).
Outlines

/