Electronics and Electrical Engineering and Control

Regular behaviors mining algorithm based on fusion of multidimensional features of spatiotemporal trajectory

  • Qiaowen JIANG ,
  • Yu LIU ,
  • Daning TAN ,
  • Shun SUN ,
  • Kai DONG
Expand
  • 1.Institute of Information Fusion,Naval Aviation University,Yantai 264000,China
    2.China Academy of Electronics and Information Technology,Beijing 100041,China

Received date: 2021-09-15

  Revised date: 2021-10-15

  Accepted date: 2021-11-17

  Online published: 2021-11-23

Supported by

National Natural Science Foundation of China(62022092);China Postdoctoral Science Foundation(2020M680631)

Abstract

In the early warning and surveillance system, the data mining technology can be used to mine the regular behavior from the massive target trajectory data, and realize intelligent awareness of situation information. At present, most regular behaviors mining methods only consider the spatial position information of target trajectory, ignoring the course and speed information of the target. It is thus difficult to distinguish the behaviors with similar spatial positions but different speeds and directions. In addition, trajectory clustering algorithms generally have complex parameter settings, and are easy to be affected by the distribution density of trajectory behavior. To solve the above problems, the spatiotemporal Hausdorff distance is firstly defined by constructing a time sliding window, which could measure the difference of multidimensional features of spatiotemporal trajectory. Secondly, based on the idea of k-nearest neighbor and the decision graph in density peak clustering, a regular behaviors mining algorithm is proposed based on fusion of multidimensional features of spatiotemporal trajectory. Finally, the simulated aircraft trajectory data and measured radar trajectory data are used for experimental analysis and verification. The results show that the proposed algorithm can accurately mine all behavior laws of targets in typical application scenarios, and has possible applications in intelligent surveillance tasks.

Cite this article

Qiaowen JIANG , Yu LIU , Daning TAN , Shun SUN , Kai DONG . Regular behaviors mining algorithm based on fusion of multidimensional features of spatiotemporal trajectory[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(5) : 326394 -326394 . DOI: 10.7527/S1000-6893.2021.26394

References

1 何友, 姚力波, 江政杰. 基于空间信息网络的海洋目标监视分析与展望[J]. 通信学报201940(4): 1-9.
  HE Y, YAO L B, JIANG Z J. Summary and future development of marine target surveillance based on spatial information network[J]. Journal on Communications201940(4): 1-9 (in Chinese).
2 何友, 姚力波. 天基海洋目标信息感知与融合技术研究[J]. 武汉大学学报·信息科学版201742(11): 1530-1536.
  HE Y, YAO L B. Space-based Sea target information awareness and fusion[J]. Geomatics and Information Science of Wuhan University201742(11): 1530-1536 (in Chinese).
3 何友, 熊伟, 刘俊, 等. 海上信息感知与融合研究进展及展望[J]. 火力与指挥控制201843(6): 1-10.
  HE Y, XIONG W, LIU J, et al. Review and prospect of research on maritime information perception and fusion[J]. Fire Control & Command Control201843(6): 1-10 (in Chinese).
4 GóMEZ-TOSTóN C, BARRENA M, CORTéS á. Characterizing the optimal Pivots for efficient similarity searches in vector space databases with Minkowski distances[J]. Applied Mathematics and Computation2018328: 203-223.
5 CHEN L, NG R. On the marriage of Lp-norms and edit distance[C]∥ Proceedings of the Thirtieth international conference on Very large data bases - Volume 30. New York: ACM, 2004: 792-803.
6 FEI S, CAI S, GU J. A modified Hausdorff distance-based algorithm for 2-dimensional spatial trajectory matching[C]∥2010 5th International Conference on Computer Science and Education (ICCSE), 2010.
7 VLACHOS M, KOLLIOS G, GUNOPULOS D. Discovering similar multidimensional trajectories[C]∥Proceedings 18th International Conference on Data Engineering. Piscataway: IEEE Press, 2001: 673-684.
8 KEOGH E J, PAZZANI M J. Scaling up dynamic time warping for datamining applications[C]∥Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2000: 285-289.
9 KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient k-means clustering algorithm: analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence200224(7): 881-892.
10 PARK H S, JUN C H. A simple and fast algorithm for K-medoids clustering[J]. Expert Systems With Applications200936(2): 3336-3341.
11 ESTER M. A density-based algorithm for discovering clusters in large spatial databases with noise[C]∥Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96), 1996.
12 RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science2014344(6191): 1492-1496.
13 MAHESWARI K, RAMAKRISHNAN M. Kernelized spectral clustering based conditional MapReduce function with big data[J]. International Journal of Computers and Applications202143(7): 601-611.
14 LATIFI-PAKDEHI A, DANESHPOUR N. DBHC: A DBSCAN-based hierarchical clustering algorithm[J]. Data & Knowledge Engineering2021135: 101922.
15 周星星, 吉根林, 张书亮. 时空轨迹相似性度量方法综述[J]. 地理信息世界201825(4): 11-18.
  ZHOU X X, JI G L, ZHANG S L. Overview of the similarity measurement methods for spatial-temporal trajectory[J]. Geomatics World201825(4): 11-18 (in Chinese).
16 WARREN LIAO T W. Clustering of time series data—a survey[J]. Pattern Recognition200538(11): 1857-1874.
17 ZHENG Y. Trajectory data mining: An overview[J]. ACM Transactions on Intelligent Systems and Technology20156(3): 1-41.
18 PAN X L, HE Y, WANG H P, et al. Mining regular behaviors based on multidimensional trajectories[J]. Expert Systems With Applications201666: 106-113.
19 孙璐, 周伟, 姜佰辰, 等. 一种时空联合约束的多源航迹相似性度量模型[J]. 系统工程与电子技术201739(11): 2405-2413.
  SUN L, ZHOU W, JIANG B C, et al. Multi-source trajectories similarity measure model with spatial and temporal constraints[J]. Systems Engineering and Electronics201739(11): 2405-2413 (in Chinese).
20 HUNG C C, PENG W C, LEE W C. Clustering and aggregating clues of trajectories for mining trajectory patterns and routes[J]. The VLDB Journal201524(2): 169-192.
21 AGRAWAL, SWAMI A. Mining association rules between sets of items in large databases[C]∥Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, 1993: 207-216.
22 魏龙翔, 何小海, 滕奇志, 等. 结合Hausdorff距离和最长公共子序列的轨迹分类[J]. 电子与信息学报201335(4): 784-790.
  WEI L X, HE X H, TENG Q Z, et al. Trajectory classification based on Hausdorff distance and longest common SubSequence[J]. Journal of Electronics & Information Technology201335(4): 784-790 (in Chinese).
23 LI H H, LIU J X, YANG Z L, et al. Adaptively constrained dynamic time warping for time series classification and clustering[J]. Information Sciences2020534: 97-116.
24 LEE J G, HAN J W, LI X L. Trajectory outlier detection: A partition-and-detect framework[C]∥2008 IEEE 24th International Conference on Data Engineering. Piscataway: IEEE Press, 2008: 140-149.
25 WEN Y T, LAI C H, LEI P R, et al. RouteMiner: Mining Ship Routes from a Massive Maritime Trajectories[C]∥ IEEE International Conference on Mobile Data Management. IEEE, 2014: 353-356.
26 李旭东, 成烽. 一种基于密度峰值聚类的经典轨迹计算方法[J]. 中国电子科学研究院学报201914(9): 967-972.
  LI X D, CHENG F. Computing classical trajectories using density-peak based clustering[J]. Journal of China Academy of Electronics and Information Technology201914(9): 967-972 (in Chinese).
27 PICIARELLI C, MICHELONI C, FORESTI G L. Trajectory-based anomalous event detection[J]. IEEE Transactions on Circuits and Systems for Video Technology200818(11): 1544-1554.
Outlines

/