The surface of hypersonic vehicles will concurrently experience turbulence and chemical non-equilibrium flow during flight at a high Mach number and a low altitude. However, current research on the flow characteristics of such high-temperature turbulent boundary layers with chemical non-equilibrium is still limited, and understanding of the dominant flow mechanism of turbulence characteristics needs to be further deepened. Choosing the flow state after the leading shock of a cone, this study sets three different wall temperature to compare the distribution characteristics of boundary layer parameters through direct numerical simulation, and analyzes the contributions of different events to Reynolds shear stress, turbulent heat-flux, and turbulent mass diffusion using quadrant analysis. The results show that the contribution of ejections and sweeps to Reynolds shear stress is dominant in the entire boundary layer. The cold wall condition will cause change in the dominant events of both the streamwise and normalwise turbulent heat-flux on both sides of the temperature peak. The streamwise turbulent mass diffusion of O atom components is mainly affected by slow moving high-mass fraction motion and fast moving low-mass fraction motion, while that of the normalwise turbulent mass is dominated by upward moving high-mass fraction motion and inward moving low-mass fraction motion.
[1] CANDLER G V. Rate effects in hypersonic flows[J]. Annual Review of Fluid Mechanics, 2019, 51: 379-402.
[2] URZAY J, DI RENZO M. Engineering aspects of hypersonic turbulent flows at suborbital enthalpies[C]//Annual Research Briefs. Center for Turbulence Research, 2020: 7-32.
[3] MOIN P, MAHESH K. Direct numerical simulation: A tool in turbulence research[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 539-578.
[4] PIROZZOLI S. Numerical methods for high-speed flows[J]. Annual Review of Fluid Mechanics, 2011, 43: 163-194.
[5] 李新亮. 高超声速湍流直接数值模拟技术[J]. 航空学报, 2015, 36(1): 147-158. LI X L. Direct numerical simulation techniques for hypersonic turbulent flows[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 147-158 (in Chinese).
[6] 孙东, 刘朋欣, 童福林. 展向振荡对激波/湍流边界层干扰的影响[J]. 航空学报, 2020, 41(12): 124054. SUN D, LIU P X, TONG F L. Effect of spanwise oscillation on interaction of shock wave and turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124054 (in Chinese).
[7] 孙东, 刘朋欣, 沈鹏飞, 等. 马赫6柱-裙激波/边界层干扰直接模拟研究[J]. 航空学报, 2021, 42(6): 124681. SUN D, LIU P X, SHEN P F, et al. Direct numerical simulation of shock wave/turbulent boundary layer interaction in a hollow cylinder-flare configuration at Ma 6[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124681 (in Chinese).
[8] MARTÍN M P, CANDLER G V. DNS of reacting hypersonic turbulent boundary layers[C]//29th AIAA Fluid Dynamics Conference.Reston: AIAA, 1998.
[9] MARTÍN M P, CANDLER G. DNS of a Mach 4 boundary layer with chemical reactions[C]//38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000.
[10] MARTÍN M P, CANDLER G. Temperature fluctuation scaling in reacting boundary layers[C]//15th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2001.
[11] MARTÍN M P. Exploratory study of turbu-lence/chemistry interaction in hypersonic flows: AIAA-2003-4055[R].Reston: AIAA, 2003.
[12] DUAN L, MARTÍN M P. Effect of finite-rate chemical reactions on turbulence in hypersonic turbulence boundary layers[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009.
[13] DUAN L, MARTÍN M P. Study of turbulence-chemistry interaction in hypersonic turbulent boundary layers[C]//20th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2011.
[14] DUAN L, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy[J]. Journal of Fluid Mechanics, 2011, 684: 25-59.
[15] KIM P. Non-equilibrium effects on hypersonic turbulent boundary layers[D].Los Angeles: University of California, 2016.
[16] 刘朋欣, 袁先旭, 孙东, 等. 高温化学非平衡湍流边界层直接数值模拟[J/OL]. 航空学报, (2020-11-16)[2021-08-25].https://kns.cnki.net/kcms/detail/11.1929.V.20201113.1533.006.html. LIU P X, YUAN X X, SUN D, et al. DNS of high-temperature turbulent boundary layer with chemical nonequilibrium[J]. Acta Aeronautica et Astronautica Sinica, (2020-11-16)[2021-08-25].https://kns.cnki.net/kcms/detail/11.1929.V.20201113.1533.006.html (in Chinese).
[17] 刘朋欣, 李辰, 孙东, 等. 高温化学非平衡湍流边界层统计特性分析[J]. 空气动力学学报, (2021-03-02)[2021-08-25].https://kns.cnki.net/kcms/detail/51.1192.TK.20210301.1829.002.html. LIU P X, LI C, SUN D, et al. Statistical properties of high-temperature turbulent boundary layer including chemical nonequilibrium[J]. Acta Aerodynamica Sinica, (2021-03-02)[2021-08-25].https://kns.cnki.net/kcms/detail/51.1192.TK.20210301.1829.002.html (in Chinese).
[18] 吴正园, 莫凡, 高振勋, 等. 湍流边界层与高温气体效应耦合的直接数值模拟[J]. 空气动力学学报, 2020, 38(6): 1111-1119, 1128. WU Z Y, MO F, GAO Z X, et al. Direct numerical simulation of turbulent and high-temperature gas effect coupled flow[J]. Acta Aerodynamica Sinica, 2020, 38(6): 1111-1119, 1128 (in Chinese).
[19] DI RENZO M, URZAY J. Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies[J]. Journal of Fluid Mechanics, 2021, 912: A29.
[20] VOLPIANI P S. Numerical strategy to perform direct numerical simulations of hypersonic shock/boundary-layer interaction in chemical nonequilibrium[J]. Shock Waves, 2021, 31(4): 361-378.
[21] LU S S, WILLMARTH W W. Measurements of the structure of the Reynolds stress in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 1973, 60(3): 481.
[22] TICHENOR N R, HUMBLE R A, BOWERSOX R D W. Response of a hypersonic turbulent boundary layer to favourable pressure gradients[J]. Journal of Fluid Mechanics, 2013, 722: 187-213.
[23] DELEUZE J, AUDIFFREN N, ELENA M. Quadrant analysis in a heated-wall supersonic boundary layer[J]. Physics of Fluids, 1994, 6(12): 4031-4041.
[24] WALLACE J M. Quadrant analysis in turbulence research: History and evolution[J]. Annual Review of Fluid Mechanics, 2016, 48(1): 131-158.
[25] CASTRO M, COSTA B, DON W S. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2011, 230(5): 1766-1792.
[26] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228.
[27] GUPTA R N, YOS J M, THOMPSON R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K[EB/OL]. (1989-02-01)[2021-08-20]. https://ntrs.nasa.gov/citations/19890011822.
[28] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[29] ADLER M C, GONZALEZ D R, STACK C M, et al. Synthetic generation of equilibrium boundary layer turbulence from modeled statistics[J]. Computers & Fluids, 2018, 165: 127-143.
[30] DUAN L, BEEKMAN I, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature[J]. Journal of Fluid Mechanics, 2010, 655: 419-445.
[31] PIROZZOLI S, BERNARDINI M, GRASSO F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer[J]. Journal of Fluid Mechanics, 2008, 613: 205-231.
[32] SUBBAREDDY P, CANDLER G. DNS of transition to turbulence in a hypersonic boundary layer[C]//41 st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011.
[33] SHARMA S, SHADLOO M S, HADJADJ A. Turbulent flow topology in supersonic boundary layer with wall heat transfer[J]. International Journal of Heat and Fluid Flow, 2019, 78: 108430.
[34] WALLACE J M, ECKELMANN H, BRODKEY R S. The wall region in turbulent shear flow[J]. Journal of Fluid Mechanics, 1972, 54(1): 39-48.