Special Topic of Shock/Boundary Layer Interation Mechanism and Control

Statistical characteristics of skin friction of shock wave/turbulent boundary layer interaction in hollow cylinder-flare configuration at Mach 6

  • SHEN Pengfei ,
  • LIU Pengxin ,
  • SUN Dong ,
  • YUAN Xianxu
Expand
  • 1. State Key Laboratory of Aerodynamics, Mianyang 621000, China;
    2. Computational Aerodynamics Institute, China Aerodynamics Research & Development Center, Mianyang 621000, China

Received date: 2021-06-23

  Revised date: 2021-12-13

  Online published: 2021-09-22

Supported by

National Key Research and Development Program of China (2019YFA0405300); National Natural Science Foundation of China (11802324)

Abstract

To examine the statistical characteristics of skin friction of shock wave/turbulent boundary layer interaction, the direct numerical simulation method was used to obtain the exact flow field of the shock wave/turbulent boundary layer in a hollow cylinder-flare configuration at Mach 6. The decomposition formula of averaged skin friction was derived and studied together with the convection item, streamwise inhomogeneity item, molecular viscous item, curvature effect item, and turbulent kinetic energy dissipation item. The statistical characteristics of fluctuating skin friction and averaged skin friction were explored. Probability density functionresults indicate that the fluctuating skin friction deviates from the normal distribution in the interaction region with distinct intermittency. Power Spectrum Density results show that energy of skin friction plays the main role in middle frequency zone whose peal location is 0.14 before interaction while it does in higher frequency zone after interaction. After the decomposition of the averaged skin friction, the molecular viscous item and turbulent kinetic energy dissipation item mainly contribute to the averaged skin friction. Before the interaction region, the molecular viscous item plays the main role, while after the interaction region, the turbulent kinetic energy dissipation item dominates. After the interaction, the convection item becomes stronger than before the interaction, the curvature effect item remains the same, and the streamwise inhomogeneity item turns negative from positive before the interaction, which is caused by the change in the pressure gradient item. Moreover, the fact that different regions in the boundary layer indicate different flow features leads to different contributions to the averaged skin friction, particularly for the turbulent kinetic energy dissipation item.

Cite this article

SHEN Pengfei , LIU Pengxin , SUN Dong , YUAN Xianxu . Statistical characteristics of skin friction of shock wave/turbulent boundary layer interaction in hollow cylinder-flare configuration at Mach 6[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(1) : 626005 -626005 . DOI: 10.7527/S1000-6893.2021.26005

References

[1] FERRI A. Experimental results with airfoils tested in the high speed tunnel at guidonia: NACA TM 946[R]. Washington, D.C.: NACA, 1940.
[2] BOOKEY P, WYCKHAM C, SMITS A. Experimental investigations of Mach 3 shock-wave turbulent boundary layer interactions[C]//35th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2005.
[3] ERENGIL M E, DOLLING D S. Unsteady wave structure near separation in a Mach 5 compression rampinteraction[J]. AIAA Journal, 1991, 29(5): 728-735.
[4] ANDREOPOULOS J, MUCK K C. Some new aspects of the shock-wave/boundary-layer interaction in compression-ramp flows[J]. Journal of Fluid Mechanics, 1987, 180: 405.
[5] MCCLURE W B. An experimental study of the driving mechanism and control of the unsteady shock induced turbulent separation in a Mach 5 compression corner flow[D]. Austin: The University of Texas, 1992.
[6] THOMAS F O, PUTNAM C M, CHU H C. On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interactions[J]. Experiments in Fluids, 1994, 18(1): 69-81.
[7] PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18(6): 065113.
[8] PIPONNIAU S, DUSSAUGE J P, DEBIÈVE J F, et al. A simple model for low-frequency unsteadiness in shock-induced separation[J]. Journal of Fluid Mechanics, 2009, 629: 87-108.
[9] WU M W, MARTÍN M P. Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data[J]. Journal of Fluid Mechanics, 2008, 594: 71-83.
[10] TU G H, DENG X G, MAO M L. Assessment of two turbulence models and some compressibility corrections for hypersonic compression corners by high-order difference schemes[J]. Chinese Journal of Aeronautics, 2012, 25(1): 25-32.
[11] 孙东, 刘朋欣, 童福林. 展向振荡对激波/湍流边界层干扰的影响[J]. 航空学报, 2020, 41(12): 124054. SUN D, LIU P X, TONG F L. Effect of spanwise oscillation on interaction of shock wave and turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124054(in Chinese).
[12] 袁湘江, 涂国华, 张涵信, 等. 激波边界层的相互作用对扰动波传播的影响[J]. 空气动力学学报, 2006, 24(1): 22-27. YUAN X J, TU G H, ZHANG H X, et al. Disturbance waves evolvement influenced by shock-boundary interaction[J]. Acta Aerodynamica Sinica, 2006, 24(1): 22-27(in Chinese).
[13] 童福林, 孙东, 袁先旭, 等. 超声速膨胀角入射激波/湍流边界层干扰直接数值模拟[J]. 航空学报, 2020, 41(3): 123328. TONG F L, SUN D, YUAN X X, et al. Direct numerical simulation of impinging shock wave/turbulent boundary layer interactions in a supersonic expansion corner[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 123328(in Chinese).
[14] 张昊元, 孙东, 邱波, 等. 湍动能在激波/边界层干扰流动中的影响分析[J]. 航空学报,(2021-05-20)[2021-06-17]. http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2021.25504. ZHANG H Y, SUN D, QIU B, et al. Influence of the turbulent kinetic energy in shock wave boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica,(2021-05-20)[2021-06-17]. http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2021.25504(in Chinese).
[15] 童福林, 董思卫, 段俊亦, 等. 激波/湍流边界层干扰三维分离泡直接数值模拟[J]. 航空学报,(2021-04-08)[2021-06-24]. http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2021.25437. TONG F L, DONG S W, DUAN J Y, et al. Direct numerical simulation of 3D separation bubble in shock wave and supersonic boundary layer interaction[J].Acta Aeronautica et Astronautica Sinica,(2021-04-08)[2021-06-24]. http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2021.25437(in Chinese).
[16] PRIEBE S, MARTÍN M P. Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 699: 1-49.
[17] 段俊亦, 童福林, 李新亮, 等. 压缩-膨胀湍流边界层平均摩阻分解研究[J]. 航空学报, 2022, 43(1): 625915. DUAN J Y TONG F L, LI X L, et al. Decomposition of the mean friction drag in a compression-expansion turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625915(in Chinese).
[18] GRILLI M, SCHMID P J, HICKEL S, et al. Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 700: 16-28.
[19] 童福林, 李新亮, 段焰辉. 超声速压缩拐角激波/边界层干扰动力学模态分解[J]. 航空学报, 2017, 38(12): 121376. TONG F L, LI X L, DUAN Y H. Dynamic mode decomposition of shock wave and supersonic boundary layer interactions in a compression ramp[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12): 121376(in Chinese).
[20] SARIC W S. Experiments on the subharmonic route to the turbulence in boundary layer[C]//Turbulence and Chaotic Phenomena in Fluids. Amsterdam: North-Hollland, 1984: 117-122.
[21] HOLDEN M S. Shock-shock boundary layer interactions: N9017569[R].[S.l.]: VKI Methodology Hypersonic Testing, 1990.
[22] 郭力, 张星, 何国威. 圆柱绕流湍流结构及气动噪声大涡模拟[C]//北京力学会第20届学术年会论文集. 北京: 北京力学会, 2014: 4-5. GUO L, ZHANG X, HE G W. The large eddy simulation of subcritical turbulence structure and aerodynamic noise in a cylinder configuration[C]//Beijing Mechanical 20th Annual Symposium. Beijing: Beijing Mechanics Assocation, 2014: 4-5(in Chinese).
[23] FUKAGATA K, IWAMOTO K, KASAGI N. Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows[J]. Physics of Fluids, 2002, 14(11): L73-L76.
[24] MEHDI F, JOHANSSON T G, WHITE C M, et al. On determining wall shear stress in spatially developing two-dimensional wall-bounded flows[J]. Experiments in Fluids, 2013, 55(1): 1656.
[25] IWAMOTO K, FUKAGATA K, KASAGI N, et al. Friction drag reduction achievable by near-wall turbulence manipulation at high Reynolds numbers[J]. Physics of Fluids, 2004, 17(1): 11702.
[26] KAMETANI Y, FUKAGATA K. Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction[J]. Journal of Fluid Mechanics, 2011, 681: 154-172.
[27] KAMETANI Y, FUKAGATA K, ÖRLV R, et al. Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number[J]. International Journal of Heat and Fluid Flow, 2015, 55: 132-142.
[28] STROH A, FROHNAPFEL B, SCHLATTER P, et al. A comparison of opposition control in turbulent boundary layer and turbulent channel flow[J]. Physics of Fluids, 2015, 27(7): 075101.
[29] RENARD N, DECK S. A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer[J]. Journal of Fluid Mechanics, 2016, 790: 339-367.
[30] FAN Y T, LI W P, PIROZZOLI S. Decomposition of the mean friction drag in zero-pressure-gradient turbulent boundary layers[J]. Physics of Fluids, 2019, 31(8): 086105.
[31] FAN Y T, CHENG C, LI W P. Effects of the Reynolds number on the mean skin friction decomposition in turbulent channel flows[J]. Applied Mathematics and Mechanics, 2019, 40(3): 331-342.
[32] LI W P, FAN Y T, MODESTI D, et al. Decomposition of the mean skin-friction drag in compressible turbulent channel flows[J]. Journal of Fluid Mechanics, 2019, 875: 101-123.
[33] FAN Y T, LI W P, ATZORI M, et al. Decomposition of the mean friction drag in adverse-pressure-gradient turbulent boundary layers[J]. Physical Review Fluids, 2020, 5(11): 114608.
[34] YOON M, HWANG J, SUNG H J. Contribution of large-scale motions to the skin friction in a moderate adverse pressure gradient turbulent boundary layer[J]. Journal of Fluid Mechanics, 2018, 848: 288-311.
[35] YOON M, AHN J, HWANG J, et al. Contribution of velocity-vorticity correlations to the frictional drag in wall-bounded turbulent flows[J]. Physics of Fluids, 2016, 28(8): 081702.
[36] MURTHY V S, ROSE W C. Wall shear stress measurements in a shock-wave boundary-layer interaction[J]. AIAA Journal, 1978, 16(7): 667-672.
[37] 童福林, 周桂宇, 周浩, 等. 激波/湍流边界层干扰物面剪切应力统计特性[J]. 航空学报, 2019, 40(5): 122504. TONG F L, ZHOU G Y, ZHOU H, et al. Statistical characteristics of wall shear stress in shock wave and turbulent boundary layer interactions[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122504(in Chinese).
[38] 李新亮, 傅德薰, 马延文. 可压缩尖锥边界层湍流的直接数值模拟[J]. 中国科学(G辑: 物理学力学天文学), 2008, 38(1): 89-101. LI X L, FU D X, MA Y W. Direct numerical simulation of turbulent boundary layer in sharp cone[J]. Science in China(Series G: Physics, Mechanics & Astronomy), 2008, 38(1): 89-101(in Chinese).
[39] LI X L, LENG Y, HE Z W. Optimized sixth-order monotonicity-preserving scheme by nonlinear spectral analysis[J]. International Journal for Numerical Methods in Fluids, 2013, 73(6): 560-577.
[40] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228.
[41] 耿妍, 张端金. 自适应滤波算法综述[J]. 信息与电子工程,2008(4): 315-320. GEN Y, ZHANG D G. A review of self-adaptive filtering algorithm[J]. Information and Electronic Engineering, 2008(4): 315-320(in Chinese).
[42] 孙东, 刘朋欣, 沈鹏飞, 等. 高超声速柱-裙激波/边界层干扰直接模拟研究[J]. 航空学报, 2021, 42(12): 124681. SUN D, LIU P X, SHEN P F, et al. Direct numerical simulation of shock wave/turbulent boundary layer interaction in a hollow cylinder-flare configuration at Ma 6[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 124681(in Chinese).
[43] 傅德薰, 马延文, 李新亮. 可压缩湍流直接数值模拟[M]. 北京: 科学出版社, 2010. FU D X, MA Y W, LI X L. Direct numerical simulation of compressible turbulent[M]. Beijing: Science Press, 2010(in Chinese).
[44] Subbareddy P K, Candler G V. A fully discrete, kinetic energy consistent finite-volume scheme for compressible flows[J]. Journal of Computational Physics, 2009, 228(5): 1347-1364.
Outlines

/