[1] 李小波, 王维平, 林木, 等. 体系贡献率评估的研究框架、进展与重点方向[J]. 系统工程理论与实践, 2019, 39(6):1623-1634. LI X B, WANG W P, LIN M, et al. The research framework, progress, and key directions of system-of-systems contribution ratio evaluation[J]. Systems Engineering-Theory & Practice, 2019, 39(6):1623-1634(in Chinese).
[2] 李琳琳, 路云飞, 张壮, 等. 基于信息优势的指控系统指标体系构建及建模[J]. 系统工程与电子技术, 2018, 40(3):577-582. LI L L, LU Y F, ZHANG Z, et al. System construction and modeling of command and control system index based on information superiority[J]. Systems Engineering and Electronics, 2018, 40(3):577-582(in Chinese).
[3] 魏金钟, 王光耀, 顾诵芬. 无人作战飞机对地攻击效费比分析[J]. 北京航空航天大学学报, 2009, 35(6):709-713. WEI J Z, WANG G Y, GU S F. Cost efficiency analysis of attack UCAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(6):709-713(in Chinese).
[4] 陆震, 黄用华. 美俄电子战对抗的现状与分析[J]. 北京邮电大学学报, 2020, 43(5):1-8. LU Z, HUANG Y H. Electronic warfare confrontation between the United States and Russia[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(5):1-8(in Chinese).
[5] 李硕, 李祯静, 朱松, 等. 美军电磁频谱战发展分析及启示[J]. 中国电子科学研究院学报, 2020, 15(8):721-724. LI S, LI Z J, ZHU S, et al. Development analysis and enlightenment of US army's electromagnetic spectrum warfare[J]. Journal of China Academy of Electronics and Information Technology, 2020, 15(8):721-724(in Chinese).
[6] 华灯鑫, 宋小全. 先进激光雷达探测技术研究进展[J]. 红外与激光工程, 2008, 37(S3):21-27. HUA D X, SONG X Q. Advances in lidar remote sensing techniques[J]. Infrared and Laser Engineering, 2008, 37(S3):21-27(in Chinese).
[7] 韩欣珉, 尚柏林, 徐浩军, 等. 隐身飞机敏感性影响因素组合分析[J]. 北京航空航天大学学报, 2019, 45(6):1185-1194. HAN X M, SHANG B L, XU H J, et al. Combination analysis of susceptibility influencing factors of stealth aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6):1185-1194(in Chinese).
[8] 时晨光, 董璟, 周建江, 等. 飞行器射频隐身技术研究综述[J]. 系统工程与电子技术, 2021, 43(6):1452-1467. SHI C G, DONG J, ZHOU J J, et al. Overview of aircraft radio frequency stealth technology[J]. Systems Engineering and Electronics, 2021, 43(6):1452-1467.
[9] SYDNEY J. FREEDBERG J R. DoD CIO Says spectrum may become warfighting domain[EB/OL]. (2015-12-09)[2021-04-16]. https://breakingdefense.com/2015/12/dod-cio-says-spectrum-may-become-warfighting-domain/.
[10] Dept of Defense. Dod electromagnetic spectrum superiority strategy[EB/OL]. (2020-10-29)[2021-04-18]. https://media.defense.gov/2020/Oct/29/2002525927/-1/-1/0/ELECTROMAGNETIC_SPECTRUM_STRATEGY.PDF.
[11] CLARK B, GUNZINGER M. Winning the airwaves:Regaining America's dominance in the electromagnetic spectrum[EB/OL]. (2015-12-1)[2021-04-18]. https://csbaonline.org/research/publications/winning-the-airwaves-sustaining-americas-advantage-in-the-electronic-spectr/pu-blication/1.
[12] CLARK B, GUNZINGER M, SLOMAN J. Winning in the gray zone:Using electromagnetic warfare to regain escalation dominance[EB/OL]. (2017-10-5)[2021-04-18]. https://csbaonline.org/research/publications/winning-in-the-gray-zone-using-electromagnetic-warfare-to-regain-escalation.
[13] Joint Chiefs of Staff. Joint electromagnetic spectrum operations[EB/OL]. (2016-10-20)[2021-04-18].https://fas.org/irp/doddir/dod/jdn3_16.pdf#:~:text=This%20joint%20doctrine%20note%20%28JDN%29%20describes%20how%20to,exponential%20increase%20in%20commercial%20and%20military%20EMS-enabled%2Fdependent%20capabilities.
[14] Joint Chiefs of Staff. JP3-13.1 Electronic warfare[EB/OL]. (2012-02-08)[2021-04-18]. https://www.globalsecurity.org/military/library/policy/dod/joint/jp3_13_1_2012.pdf.
[15] Dept of Defense. JP3-85 joint electromagnetic spectrum operations[EB/OL]. (2020-05-22)[2021-04-18]. https://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/jp3_85.pdf?ver=2020-04-09-140128-347.
[16] BALL R E. 飞机生存力分析与设计基础[M]. 林光宇, 宋笔锋, 译. 北京:航空工业出版社, 1998:24-27. BALL R E. The fundamentals of aircraft combat survivability analysis and design[M]. LIN G Y, SONG B F, translated. Beijing:Aviation Industry Press, 1998:24-27(in Chinese).
[17] 周健, 龚春林, 粟华, 等. 飞行器体系优化设计问题[J]. 航空学报, 2018, 39(11):222235. ZHOU J, GONG C L, SU H, et al. Optimal design problem of system of systems of flight vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11):222235(in Chinese).
[18] 杨超, 刘国亮. "低-零功率"电磁频谱战能力需求与作战模式[J]. 舰船电子工程, 2017, 37(3):145-147. YANG C, LIU G L. Capability requirements and operational modes of low-to-no power EMS warfare[J]. Ship Electronic Engineering, 2017, 37(3):145-147(in Chinese).
[19] 冯微, 杨仕平, 王健, 等. 复杂电磁环境下的LPI/LPD通信技术研究[J]. 现代电子技术, 2014, 37(15):20-22, 27. FENG W, YANG S P, WANG J, et al. Study on LPI/LPD communication technology under complicated EM environment[J]. Modern Electronics Technique, 2014, 37(15):20-22, 27(in Chinese).
[20] 邱华鑫, 段海滨, 范彦铭. 基于鸽群行为机制的多无人机自主编队[J]. 控制理论与应用, 2015, 32(10):1298-1304. QIU H X, DUAN H B, FAN Y M. Multiple unmanned aerial vehicle autonomous formation based on the behavior mechanism in pigeon flocks[J]. Control Theory & Applications, 2015, 32(10):1298-1304(in Chinese).
[21] 冯微, 杨仕平, 王健, 等. 复杂电磁环境下的LPI/LPD通信技术研究[J]. 现代电子技术, 2014, 37(15):20-22, 27. FENG W, YANG S P, WANG J, et al. Study on LPI/LPD communication technology under complicated EM environment[J]. Modern Electronics Technique, 2014, 37(15):20-22, 27(in Chinese).
[22] 胡小云. 一种武器发射平台生存能力预测方法[J]. 火炮发射与控制学报, 2010, 31(4):7-11. HU X Y. A prediction method of weapon launching platform survivability[J]. Journal of Gun Launch & Control, 2010, 31(4):7-11(in Chinese).
[23] 刘维国, 刘晓明, 王一琳, 等. 美国"海军一体化防空火控系统"发展研究[J]. 战术导弹技术, 2017(2):21-25, 57. LIU W G, LIU X M, WANG Y L, et al. Analysis on the development of American naval integrated fire control-counter air system[J]. Tactical Missile Technology, 2017(2):21-25, 57(in Chinese).
[24] SYDNEY J. FREEDBERG J R. Navy forges new EW strategy:Electromagnetic maneuver warfare[EB/OL]. (2014-10-10)[2021-04-16]. https://breakingdefense.com/2014/10/navy-forges-new-ew-strategy-electromagne-tic-maneuver-warfare/.
[25] 韩磊, 庞艳珂, 曹禹, 等. 精确打击技术在信息化战争中的应用及发展趋势[J]. 兵工学报, 2010, 31(S2):75-78. HAN L, PANG Y K, CAO Y, et al. Application and development tendency of precise attack technology in information-based warfare[J]. Acta Armamentarii, 2010, 31(S2):75-78(in Chinese).
[26] 张璐, 洪亮, 陈旿. 基于信息技术的赛博空间对抗研究[J]. 计算机技术与发展, 2014, 24(6):208-210, 214. ZHANG L, HONG L, CHEN W. Research of cyberspace countermeasure based on information technology[J]. Computer Technology and Development, 2014, 24(6):208-210, 214(in Chinese).
[27] 魏明英, 崔正达, 李运迁. 多弹协同拦截综述与展望[J]. 航空学报, 2020, 41(S1):723804. WEI M Y, CUI Z D, LI Y Q. Review and future development of multi-missile coordinated interception[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1):723804(in Chinese).
[28] 叶巍, 刘天华, 张雳. 国外电子对抗技术的应用及趋势[J]. 电子世界, 2017(15):77. YE W, LIU T H, ZHANG L. Application and trend of electronic countermeasure technology abroad[J]. Electronics World, 2017(15):77(in Chinese).
[29] 邓有训, 余志惠. 电子对抗力量实施协同作战问题之探讨[J]. 空军雷达学院学报, 2010, 24(2):129-133. DENG Y X, YU Z H. Discussion about employing ECM force to implement coordinated operation[J]. Journal of Air Force Radar Academy, 2010, 24(2):129-133(in Chinese).
[30] 刘松涛, 雷震烁, 温镇铭, 等. 认知电子战研究进展[J]. 探测与控制学报, 2020, 42(5):1-15. LIU S T, LEI Z S, WEN Z M, et al. A development review on cognitive electronic warfare[J]. Journal of Detection & Control, 2020, 42(5):1-15(in Chinese).
[31] 周波, 戴幻尧, 乔会东, 等. 基于"OODA环"理论的认知电子战与赛博战探析[J]. 中国电子科学研究院学报, 2014, 9(6):556-562. ZHOU B, DAI H Y, QIAO H D, et al. Research on recognition EW and cyberspace operation based on "OODA loop" Theory[J]. Journal of China Academy of Electronics and Information Technology, 2014, 9(6):556-562(in Chinese).
[32] RICHARD S D. 作战空间技术:网络使能的信息优势[M]. 朱强华, 李胜勇, 夏飞, 译.北京:电子工业出版社, 2016:15-24. RICHARD S D. Battlespace technologies:Network-enabled information dominance[M]. ZHU H Q, LI S Y, XIA F, translated. Beijing:Publishing House of Electronics Industry, 2016:15-24.