Electronics and Electrical Engineering and Control

Fast guidance law identification approach for incoming missile based on GRU network

  • WANG Yinhan ,
  • FAN Shipeng ,
  • WU Guang ,
  • WANG Jiang ,
  • HE Shaoming
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Beijing Aerospace Automatic Control Institute, Beijing 100854, China

Received date: 2020-11-27

  Revised date: 2020-12-21

  Online published: 2021-02-02

Supported by

Beijing Municipal Science & Technology Commission Project (Z181100003218013)

Abstract

To identify the guidance law of enemy interceptor missile, a fast guidance law identification method is proposed based on the Gate Recurrent Unit (GRU). A model for the relative motion of the interceptor missile and aircraft in the three-dimensional space is constructed, and it is assumed that the interceptor adopts the classical PN guidance law or APN guidance law. The training sample set and test sample set are extracted from the model. The input of the samples is the kinematic information of both missile and aircraft, while the label is the guidance law of the missile. A neural network with three hidden layers is established based on the GRU. The back propagation based on Adam is used to train the network. The influence of the elements including noise, sample time span, type and size of neural networks on identification accuracy is investigated by simulation, and parameters of GRU networks are optimized. Simulations are conducted under different conditions. The results show that the method proposed has better performance of anti-noise and higher precision than other types of networks. In addition, compared with the identification model based on Kalman filter, the proposed method can reduce the identification time.

Cite this article

WANG Yinhan , FAN Shipeng , WU Guang , WANG Jiang , HE Shaoming . Fast guidance law identification approach for incoming missile based on GRU network[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(2) : 325024 -325024 . DOI: 10.7527/S1000-6893.2021.25024

References

[1] 肖惟, 于江龙, 董希旺, 等. 过载约束下的大机动目标协同拦截[J].航空学报, 2020, 41(S1):723777. XIAO W, YU J L, DONG X W, et al. Cooperative interception against highly maneuvering target with acceleration constraints[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(S1):723777(in Chinese).
[2] 胡志恒, 周荻, 邹昕光. 拦截导弹的制导律辨识与弹道预报[J].系统工程与电子技术, 2018, 40(3):609-614. HU Z H, ZHOU D, ZOU X G. Guidance law estimation and trajectory prediction of interceptor missile[J].Systems Engineering and Electronics, 2018, 40(3):609-614(in Chinese).
[3] YUAN P J, CHERN J S. Analytic study of biased proportional navigation[J].Journal of Guidance, Control, and Dynamics, 1992, 15(1):185-190.
[4] YANG C D, YANG C C. Analytical solution of three-dimensional realistic true proportional navigation[J].Journal of Guidance, Control, and Dynamics, 1996, 19(3):569-577.
[5] 白志会, 黎克波, 苏文山, 等. 现实真比例导引拦截任意机动目标捕获区域[J].航空学报, 2020, 41(8):323947. BAI Z H, LI K B, SU W S, et al. Capture region of RTPN guidance law against arbitrarily maneuvering targets[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(8):323947(in Chinese).
[6] KUMAR R R, SEYWALD H, CLIFF E M. Near-optimal three-dimensional air-to-air missile guidance against maneuvering target[J].Journal of Guidance, Control, and Dynamics, 1995, 18(3):457-464.
[7] 谢剑. 基于微分博弈论的多无人机追逃协同机动技术研究[D]. 哈尔滨:哈尔滨工业大学, 2015:26-45. XIE J. Differential game throry for multi UAV pursuit maneuver technology based on collaborative research[D]. Harbin:Harbin Institute of Technology, 2015:26-45(in Chinese).
[8] WEI X Q, YANG J Y. Optimal strategies for multiple unmanned aerial vehicles in a pursuit/evasion differential game[J].Journal of Guidance, Control, and Dynamics, 2018, 41(8):1799-1806.
[9] 车竞, 郑凤麒. 基于微分对策的追逃对抗仿真[J].飞行力学, 2014, 32(4):372-375. CHE J, ZHENG F Q. Simulation of pursuit-evasion resistance based on differential game[J].Flight Dynamics, 2014, 32(4):372-375(in Chinese).
[10] OHLMEYER E J. Root-mean-square miss distance of proportional navigation missile against sinusoidal target[J].Journal of Guidance, Control, and Dynamics, 1996, 19(3):563-568.
[11] ZARCHAN P. Proportional navigation and weaving targets[J].Journal of Guidance, Control, and Dynamics, 1995, 18(5):969-974.
[12] 周中良, 程越, 阮铖巍, 等. 空战机动规避与箔条干扰协同应用策略[J].西安电子科技大学学报, 2017, 44(5):153-157, 164. ZHOU Z L, CHENG Y, RUAN C W, et al. Collaborative application strategy of evasive maneuver and chaff jamming in the air combat[J].Journal of Xidian University, 2017, 44(5):153-157, 164(in Chinese).
[13] SHAFERMAN V, SHIMA T. Cooperative multiple-model adaptive guidance for an aircraft defending missile[J].Journal of Guidance, Control, and Dynamics, 2010, 33(6):1801-1813.
[14] FONOD R, SHIMA T. Multiple model adaptive evasion against a homing missile[J].Journal of Guidance, Control, and Dynamics, 2016, 39(7):1578-1592.
[15] YUN J, RYOO C K. Missile guidance law estimation using modified interactive multiple model filter[J].Journal of Guidance, Control, and Dynamics, 2014, 37(2):484-496.
[16] LIN L, KIRUBARAJAN T, BAR-SHALOM Y. Pursuer identification and time-to-go estimation using passive measurements from an evader[J].IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1):190-204.
[17] 杜润乐, 刘佳琪, 李志峰, 等. 低通滤波与卡尔曼滤波相结合的制导律识别[J].哈尔滨工业大学学报, 2017, 49(4):66-72. DU R L, LIU J Q, LI Z F, et al. A LPF enhanced adaptive Kalman filter for guidance law recognition[J].Journal of Harbin Institute of Technology, 2017, 49(4):66-72(in Chinese).
[18] 王小平, 蔡远利, 于振华, 等. 一种导弹导引律及参数的非线性MMAE辨识方法[J].飞行力学, 2015, 33(5):430-434. WANG X P, CAI Y L, YU Z H, et al. Nonlinear MMAE-based missile guidance law and parameter identification[J].Flight Dynamics, 2015, 33(5):430-434(in Chinese).
[19] 邹昕光, 周荻, 杜润乐, 等. PN制导律多模型自适应辨识滤波方法[J].宇航学报, 2016, 37(8):974-983. ZOU X G, ZHOU D, DU R L, et al. PN guidance law identification using multi-model adaptive estimation[J].Journal of Astronautics, 2016, 37(8):974-983(in Chinese).
[20] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J].Neural Computation, 1997, 9(8):1735-1780.
[21] ROUDBARI A, SAGHAFI F. Intelligent modeling and identification of aircraft nonlinear flight[J].Chinese Journal of Aeronautics, 2014, 27(4):759-771.
[22] CHEN J F, PI D C, WU Z Y, et al. Imbalanced satellite telemetry data anomaly detection model based on Bayesian LSTM[J].Acta Astronautica, 2021, 180:232-242.
[23] 朱俊鹏, 赵洪利, 杜鑫, 等. 长短时记忆神经网络在卫星轨道预报中的研究[J].兵器装备工程学报, 2017, 38(10):127-132. ZHU J P, ZHAO H L, DU X, et al. Application of long short-term memory neural network to orbit prediction of satellite[J].Journal of Ordnance Equipment Engineering, 2017, 38(10):127-132(in Chinese).
[24] YUE Z J, LIU L, LONG T, et al. Virtual sensing method for monitoring vibration of continuously variable configuration structures using long short-term memory networks[J].Chinese Journal of Aeronautics, 2020, 33(1):244-254.
[25] 初未萌, 杨今朝, 邬树楠, 等. 基于LSTM的空间机器人系统惯性张量在轨辨识[J].航空学报, 2021,42(11):524615. CHU W M, YANG J Z, WU S N, et al. LSTM-based on-orbit identification for inertial tensor of a space robot system[J].Acta Aeronautica et Astronautica Sinica, 2021,42(11):524615(in Chinese).
[26] 欧微, 柳少军, 贺筱媛, 等. 战场对敌目标战术意图智能识别模型研究[J].计算机仿真, 2017, 34(9):10-14, 19. OU W, LIU S J, HE X Y, et al. Study on the intelligent recognition model of enemy target's tactical intention on battlefield[J].Computer Simulation, 2017, 34(9):10-14, 19(in Chinese).
[27] WANG Y D, ADDEPALLI S, ZHAO Y F. Recurrent neural networks and its variants in remaining useful life prediction[J].IFAC-PapersOnLine, 2020, 53(3):137-142.
[28] 林德福, 王辉, 王江. 战术导弹自动驾驶仪设计与制导律分析[M]. 北京:北京理工大学出版社, 2012. LIN D F, WANG H, WANG J. Autopilot design and guidance law analysis for tactical missiles[M]. Beijing:Beijing Insititute of Technology Press, 2012(in Chinese).
[29] 陈浩, 任卿龙, 滑艺, 等. 基于模糊神经网络的海面目标战术意图识别[J].系统工程与电子技术, 2016, 38(8):1847-1853. CHEN H, REN Q L, HUA Y, et al. Fuzzy neural network based tactical intention recognition for sea targets[J].Systems Engineering and Electronics, 2016, 38(8):1847-1853(in Chinese).
[30] 任艺柯. 基于改进的LSTM网络的交通流预测[D]. 大连:大连理工大学, 2019:24-26. REN Y K. Traffic flow prediction based on an improved LSTM network[D]. Dalian:Dalian University of Technology, 2019:24-26. (in Chinese)
[31] 康丹青. 基于深度学习的短时交通流预测方法研究[D]. 哈尔滨:哈尔滨理工大学, 2018:22-24. KANG D Q. Short-term traffic flow prediction based on deep learning[D]. Harbin:Harbin University of Science and Technology, 2018:22-24. (in Chinese)
[32] 季学武, 费聪, 何祥坤, 等. 基于LSTM网络的驾驶意图识别及车辆轨迹预测[J].中国公路学报, 2019, 32(6):34-42. JI X W, FEI C, HE X K, et al. Intention recognition and trajectory prediction for vehicles using LSTM network[J].China Journal of Highway and Transport, 2019, 32(6):34-42(in Chinese).
[33] KINGMA D P, BA J. Adam:a method for stochastic optimization[J].arXiv preprint arXiv:1412.6980,2014.
[34] 周旺旺, 姚佩阳, 张杰勇, 等. 基于深度神经网络的空中目标作战意图识别[J].航空学报, 2018, 39(11):322476. ZHOU W W, YAO P Y, ZHANG J Y, et al. Combat intention recognition for aerial targets based on deep neural network[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(11):322476(in Chinese).
[35] 费蓉, 刘方, 谢国, 等. 基于门控循环单元的车辆跟驰行为仿真模型[J].系统仿真学报, 2020, 32(10):1862-1873. FEI R, LIU F, XIE G, et al. GRU-based car-following behavior simulation model[J].Journal of System Simulation, 2020, 32(10):1862-1873(in Chinese).
Outlines

/