Material Engineering and Mechanical Manufacturing

Simulation and experimental design of profiling eddy current detection of blade leading edge

  • ZHANG Guocai ,
  • XIE Xiaorong ,
  • LIU Yongzhao ,
  • FENG Yanqing ,
  • YOU Yong
Expand
  • 1. School of Applied Science and Civil Engineering, Beijing Institute of Technology, Zhuhai, Zhuhai 519088, China;
    2. MTU Maintenance Zhuhai, Zhuhai 519030, China

Received date: 2020-08-27

  Revised date: 2020-09-22

  Online published: 2020-11-20

Supported by

Young Innovative Talent Project of Guangdong Provincial Department of Education (2018KQNCX340);Non-destructive Testing Sub-center Project of Zhuhai High-end Manufacturing Collaborative Innovation Center (ZX-2015-063)

Abstract

The profiling eddy current detection technology is particularly suitable for rapid detection of the leading edge of blades with large curvature because of its good coupling and ability to effectively suppress the shaking in the detection process. The finite element model for the leading edge and the profiling coil is established for profiling eddy current detection of the leading edge of the turbine blade. The finite element method is used to analyze the detection signal characteristics of the blade leading edge with three typical defects (pit, long crack, and edge pit) with internal and external excitation, different inner diameter coils, and different frequencies. The simulation results show that the detection area can effectively cover the entire front edge area by implementing profiling eddy current detection on the front edge with large curvature. The higher the detection frequency, the higher the detection sensitivity. In the dual-coil detection mode, the externally excited internal receiver is more sensitive than the internally excited external receiver. When the size of the inner detecting coil is larger than the size of the defect, the smaller the inner diameter of the inner receiving coil, the higher its relative sensitivity. Based on the simulation results, a leading edge defect test block is made, and a leading edge profiling eddy current detection system is designed using the phase-locked amplification and graphical programming technology. The test results show that the profiling coil can effectively detect the typical leading edge defects. The amplitude and phase output results of the detected voltage are similar to the simulation results. The research findings can be used to guide detection of the leading edge of the blade with large curvature in engineering practice.

Cite this article

ZHANG Guocai , XIE Xiaorong , LIU Yongzhao , FENG Yanqing , YOU Yong . Simulation and experimental design of profiling eddy current detection of blade leading edge[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(2) : 424678 -424678 . DOI: 10.7527/S1000-6893.2020.24678

References

[1] 王庆胜. 航空发动机涡轮叶片缺陷检测中的关键技术研究[D]. 西安:西北工业大学, 2005:1-3. WANG Q S. Research on image segment in defect testing of turbine blade[D]. Xi'an:Northwestern Polytechnical University, 2005:1-3(in Chinese).
[2] 孙护国, 李永建, 叶斌. 前缘半径对钛合金叶片抗外物损伤能力影响的数值分析[J]. 航空发动机, 2016, 42(2):1-6. SUN H G, LI Y J, YE B. Numerical analysis of effects of leading edge radius on resistance to foreign object damage capability of titanium alloy blade[J]. Aeroengine, 2016, 42(2):1-6(in Chinese).
[3] 关玉璞, 陈伟, 高德平. 航空发动机叶片外物损伤研究现状[J]. 航空学报, 2007,28(4):851-857. GUAN Y P, CHEN W, GAO D P. Present status of investigation of foreign object damage to blade[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4):851-857(in Chinese).
[4] 刘勇, 杨光. 某型导向器叶片穿透性裂纹检测技术[J]. 中国测试, 2017, 43(7):40-43. LIU Y, YANG G. Detection technology for through-wall cracks on guide vane[J]. China Measurement & Test, 2017, 43(7):40-43(in Chinese).
[5] 张鸿, 刘永娜, 刘大钊, 等. DZ125合金涡轮叶片荧光缺陷分析及解决方法[J]. 铸造, 2020, 69(6):632-635. ZHANG H, LIU Y N, LIU D Z, et al. Analysis and solution of fluorescent defects in DZ125 alloy turbine blade[J]. Foundry, 2020, 69(6):632-635(in Chinese).
[6] 马立印, 李洋, 周正干. 整体叶盘叶片焊缝裂纹相控阵超声检测[J]. 北京航空航天大学学报, 2017, 43(9):1900-1908. MA L Y, LI Y, ZHOU Z G. Detection of welding crack in blisk blade based on ultrasonic phased array[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9):1900-1908(in Chinese).
[7] TIWARI K A, RAISUTIS R, SAMAITIS V. Signal processing methods to improve the signal-to-noise ratio (SNR) in ultrasonic non-destructive testing of wind turbine blade[J]. Procedia Structural Integrity, 2017, 5, 1184-1191.
[8] 周正干, 杜圆媛. 航空发动机叶片X射线数字图像分析的一种新方法[J]. 中国机械工程, 2006, 17(21):2270-2273. ZHOU Z G, DU Y Y. A new analysis method for digital radiograph of turbine blade[J]. China Mechanical Engineering, 2006, 17(21):2270-2273(in Chinese).
[9] 徐春广, 马朋志, 肖定国, 等. 航空发动机叶片机械手无损检测技术[J]. 航空制造技术, 2019, 62(14):42-48. XU C G, MA P Z, XIAO D G, et al. Robotic nondestructive testing technology for aero-engine blades[J]. Aeronautical Manufacturing Technology, 2019, 62(14):42-48(in Chinese).
[10] 徐健. 发动机叶片原位无损检测技术研究[D]. 大连:大连理工大学, 2016:34-41. XU J. Research on situ non-destructive testing technology of engine blade[D]. Dalian:Dalian University of Technology, 2016:34-41(in Chinese).
[11] 宋凯, 刘堂先, 李来平, 等. 航空发动机涡轮叶片裂纹的阵列涡流检测仿真[J]. 航空学报, 2014, 35(8):2355-2363. SONG K, LIU T X, LI L P, et al. Simulation on aero-engine turbine blade cracks detection based on eddy current array[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2355-2363(in Chinese).
[12] 张丽攀, 宋凯, 王冲, 等. 航空发动机涡轮叶片裂纹涡流检测仿真及试验研究[J]. 南昌航空大学学报(自然科学版), 2018, 32(3):35-42. ZHANG L P, SONG K, WANG C, et al. Simulation and experimental research on the crack of the aeroengine turbine blade with eddy current testing[J]. Journal of Nanchang Hangkong University (Natural Sciences), 2018, 32(3):35-42(in Chinese).
[13] 于霞, 张卫民, 邱忠超, 等. 飞机发动机叶片缺陷的差激励涡流传感器检测[J]. 北京航空航天大学学报, 2015, 41(9):1582-1588. YU X, ZHANG W M, QIU Z C, et al. Differential excitation eddy current sensor testing for aircraft engine blades defect[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(9):1582-1588(in Chinese).
[14] 龚模辉, 胡博, 于润桥, 等. 压气机叶片根部原位检测传感器的设计与制作[J]. 无损检测, 2018, 40(10):10-15. GONG M H, HU B, YU R Q, et al. Design and fabrication of eddy current testing sensors for compressor blade roots[J]. Nondestructive Testing, 2018, 40(10):10-15(in Chinese).
[15] 杨洪斌, 仝茂峰, 吴晓龙, 等. 发电机风扇叶片的柔性阵列涡流检测[J]. 无损检测, 2020, 42(2):42-47. YANG H B, TONG M F, WU X L, et al. Flexible array eddy current testing of generator fan blades[J]. Nondestructive Testing, 2020, 42(2):42-47(in Chinese).
[16] 林俊明, 李寒林, 戴永红. 航空发动机叶片动态监测技术[J]. 无损检测, 2019, 41(11):26-29. LIN J M, LI H L, DAI Y H. Dynamic monitoring technology of aero-engine blades[J]. Nondestructive Testing, 2019, 41(11):26-29(in Chinese).
[17] TONG Z F, XIE S J, LIU H C, et al. An efficient electromagnetic and thermal modelling of eddy current pulsed thermography for quantitative evaluation of blade fatigue cracks in heavy-duty gas turbines[J]. Mechanical Systems and Signal Processing, 2020, 162:106781.
[18] ZHANG W P, WANG C L, XIE F Q, et al. Depect imaging curved surface based on flexible eddy current array sensor[J]. Measurement, 2020, 151:107280.
[19] MA Q P, GAO B, TIAN G Y, et al. High sensitivity flexible double square winding eddy current array for surface micro-DePECTs inspection[J]. Sensors and Actuators:A. Physical, 2020, 309:111844.
[20] SCHLOBOHM J, BRUCHWALD O, FRACKOWIAK W, et al. Advanced characterization techniques for turbine blade wear and damage[J]. Procedia CIRP, 2017, 59:83-88.
[21] 程军. 碳纤维复合材料的电磁涡流无损检测技术研究[D]. 南京:南京航空航天大学, 2015:46-50. CHENG J. Nondestructive testing of carbon fibre reinforced polymer composites using eddy current method[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015:46-50(in Chinese).
[22] 金建铭. 电磁场有限元方法[M]. 王建国,译. 西安:西安电子科技大学出版社, 1998:16-20. JIN J M. Electromagnetic field finite element method[M]. WANG J G, translated. Shaanxi:Xi'an University Press, 1998:16-20(in Chinese).
[23] 陈智. 曲率连续前缘对压气机静叶气动性能的影响研究[D]. 大连:大连海事大学, 2018:5-9. CHEN Z. Effect of curvature continuous leading edge on the aerodynamic performance in compressor static blade[D]. Dalian:Dalian Maritime University, 2018:5-9(in Chinese).
Outlines

/