[1] 王庆胜. 航空发动机涡轮叶片缺陷检测中的关键技术研究[D]. 西安:西北工业大学, 2005:1-3. WANG Q S. Research on image segment in defect testing of turbine blade[D]. Xi'an:Northwestern Polytechnical University, 2005:1-3(in Chinese). [2] 孙护国, 李永建, 叶斌. 前缘半径对钛合金叶片抗外物损伤能力影响的数值分析[J]. 航空发动机, 2016, 42(2):1-6. SUN H G, LI Y J, YE B. Numerical analysis of effects of leading edge radius on resistance to foreign object damage capability of titanium alloy blade[J]. Aeroengine, 2016, 42(2):1-6(in Chinese). [3] 关玉璞, 陈伟, 高德平. 航空发动机叶片外物损伤研究现状[J]. 航空学报, 2007,28(4):851-857. GUAN Y P, CHEN W, GAO D P. Present status of investigation of foreign object damage to blade[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4):851-857(in Chinese). [4] 刘勇, 杨光. 某型导向器叶片穿透性裂纹检测技术[J]. 中国测试, 2017, 43(7):40-43. LIU Y, YANG G. Detection technology for through-wall cracks on guide vane[J]. China Measurement & Test, 2017, 43(7):40-43(in Chinese). [5] 张鸿, 刘永娜, 刘大钊, 等. DZ125合金涡轮叶片荧光缺陷分析及解决方法[J]. 铸造, 2020, 69(6):632-635. ZHANG H, LIU Y N, LIU D Z, et al. Analysis and solution of fluorescent defects in DZ125 alloy turbine blade[J]. Foundry, 2020, 69(6):632-635(in Chinese). [6] 马立印, 李洋, 周正干. 整体叶盘叶片焊缝裂纹相控阵超声检测[J]. 北京航空航天大学学报, 2017, 43(9):1900-1908. MA L Y, LI Y, ZHOU Z G. Detection of welding crack in blisk blade based on ultrasonic phased array[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9):1900-1908(in Chinese). [7] TIWARI K A, RAISUTIS R, SAMAITIS V. Signal processing methods to improve the signal-to-noise ratio (SNR) in ultrasonic non-destructive testing of wind turbine blade[J]. Procedia Structural Integrity, 2017, 5, 1184-1191. [8] 周正干, 杜圆媛. 航空发动机叶片X射线数字图像分析的一种新方法[J]. 中国机械工程, 2006, 17(21):2270-2273. ZHOU Z G, DU Y Y. A new analysis method for digital radiograph of turbine blade[J]. China Mechanical Engineering, 2006, 17(21):2270-2273(in Chinese). [9] 徐春广, 马朋志, 肖定国, 等. 航空发动机叶片机械手无损检测技术[J]. 航空制造技术, 2019, 62(14):42-48. XU C G, MA P Z, XIAO D G, et al. Robotic nondestructive testing technology for aero-engine blades[J]. Aeronautical Manufacturing Technology, 2019, 62(14):42-48(in Chinese). [10] 徐健. 发动机叶片原位无损检测技术研究[D]. 大连:大连理工大学, 2016:34-41. XU J. Research on situ non-destructive testing technology of engine blade[D]. Dalian:Dalian University of Technology, 2016:34-41(in Chinese). [11] 宋凯, 刘堂先, 李来平, 等. 航空发动机涡轮叶片裂纹的阵列涡流检测仿真[J]. 航空学报, 2014, 35(8):2355-2363. SONG K, LIU T X, LI L P, et al. Simulation on aero-engine turbine blade cracks detection based on eddy current array[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2355-2363(in Chinese). [12] 张丽攀, 宋凯, 王冲, 等. 航空发动机涡轮叶片裂纹涡流检测仿真及试验研究[J]. 南昌航空大学学报(自然科学版), 2018, 32(3):35-42. ZHANG L P, SONG K, WANG C, et al. Simulation and experimental research on the crack of the aeroengine turbine blade with eddy current testing[J]. Journal of Nanchang Hangkong University (Natural Sciences), 2018, 32(3):35-42(in Chinese). [13] 于霞, 张卫民, 邱忠超, 等. 飞机发动机叶片缺陷的差激励涡流传感器检测[J]. 北京航空航天大学学报, 2015, 41(9):1582-1588. YU X, ZHANG W M, QIU Z C, et al. Differential excitation eddy current sensor testing for aircraft engine blades defect[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(9):1582-1588(in Chinese). [14] 龚模辉, 胡博, 于润桥, 等. 压气机叶片根部原位检测传感器的设计与制作[J]. 无损检测, 2018, 40(10):10-15. GONG M H, HU B, YU R Q, et al. Design and fabrication of eddy current testing sensors for compressor blade roots[J]. Nondestructive Testing, 2018, 40(10):10-15(in Chinese). [15] 杨洪斌, 仝茂峰, 吴晓龙, 等. 发电机风扇叶片的柔性阵列涡流检测[J]. 无损检测, 2020, 42(2):42-47. YANG H B, TONG M F, WU X L, et al. Flexible array eddy current testing of generator fan blades[J]. Nondestructive Testing, 2020, 42(2):42-47(in Chinese). [16] 林俊明, 李寒林, 戴永红. 航空发动机叶片动态监测技术[J]. 无损检测, 2019, 41(11):26-29. LIN J M, LI H L, DAI Y H. Dynamic monitoring technology of aero-engine blades[J]. Nondestructive Testing, 2019, 41(11):26-29(in Chinese). [17] TONG Z F, XIE S J, LIU H C, et al. An efficient electromagnetic and thermal modelling of eddy current pulsed thermography for quantitative evaluation of blade fatigue cracks in heavy-duty gas turbines[J]. Mechanical Systems and Signal Processing, 2020, 162:106781. [18] ZHANG W P, WANG C L, XIE F Q, et al. Depect imaging curved surface based on flexible eddy current array sensor[J]. Measurement, 2020, 151:107280. [19] MA Q P, GAO B, TIAN G Y, et al. High sensitivity flexible double square winding eddy current array for surface micro-DePECTs inspection[J]. Sensors and Actuators:A. Physical, 2020, 309:111844. [20] SCHLOBOHM J, BRUCHWALD O, FRACKOWIAK W, et al. Advanced characterization techniques for turbine blade wear and damage[J]. Procedia CIRP, 2017, 59:83-88. [21] 程军. 碳纤维复合材料的电磁涡流无损检测技术研究[D]. 南京:南京航空航天大学, 2015:46-50. CHENG J. Nondestructive testing of carbon fibre reinforced polymer composites using eddy current method[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015:46-50(in Chinese). [22] 金建铭. 电磁场有限元方法[M]. 王建国,译. 西安:西安电子科技大学出版社, 1998:16-20. JIN J M. Electromagnetic field finite element method[M]. WANG J G, translated. Shaanxi:Xi'an University Press, 1998:16-20(in Chinese). [23] 陈智. 曲率连续前缘对压气机静叶气动性能的影响研究[D]. 大连:大连海事大学, 2018:5-9. CHEN Z. Effect of curvature continuous leading edge on the aerodynamic performance in compressor static blade[D]. Dalian:Dalian Maritime University, 2018:5-9(in Chinese). |