Solid Mechanics and Vehicle Conceptual Design

Laminated acoustic metamaterial for improving low-frequency broadband sound insulation of aircraft wall panels

  • GU Jintao ,
  • WANG Xiaole ,
  • TANG Youheng ,
  • ZHOU Jie ,
  • HUANG Zhenyu
Expand
  • 1. AVIC The First Aircraft Institute, Xi’an 710089, China;
    2. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    3. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

Received date: 2020-09-22

  Revised date: 2020-11-10

  Online published: 2020-11-06

Supported by

National Natural Science Foundation of China(52003155)

Abstract

Aiming at the problem of low-frequency broadband noise control in the aircraft cabin, a laminated acoustic metamaterial, which is suitable for sound insulation enhancement of aircraft wall panels, is proposed. The laminated acoustic metamaterial is composed of two membrane-constrained acoustic metamaterial panels with different composition parameters in the front and the back, and a porous sound-absorbing material filled in them. By establishing the sound insulation calculating finite element model of laminated acoustic metamaterials, analyzing the relationship between the sound insulation characteristics of each layer of membrane-constrained acoustic metamaterials and the laminated acoustic metamaterials composed of them. And focusing on the mechanism of negative mass effect of laminated acoustic metamaterials on its sound insulation characteristics. Based on the four-microphone acoustic impedance tube test system, the normal incident sound insulation of the laminated acoustic metamaterial is measured to verify the validity of the finite element model. Finally, the insertion loss test of the large-size laminated acoustic metamaterial was carried out in the semi-cancellation chamber. The results showed that the average insertion loss of the laminated acoustic metamaterial samples with an areal density of 1.5 kg/m2 in the low-frequency operating frequency range of 100-500 Hz reaches 14 dB, which reflected the excellent low-frequency broadband sound insulation capability. The research has certain theoretical and engineering guidance value for using thin and light acoustic metamaterials to improve the low-frequency broadband sound insulation performance of aircraft wall panels.

Cite this article

GU Jintao , WANG Xiaole , TANG Youheng , ZHOU Jie , HUANG Zhenyu . Laminated acoustic metamaterial for improving low-frequency broadband sound insulation of aircraft wall panels[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(1) : 224785 -224785 . DOI: 10.7527/S1000-6893.2020.24785

References

[1] 洪志亮, 赵国昌, 杨明绥, 等. 航空发动机压气机内部流体诱发声共振研究进展[J]. 航空学报, 2019, 40(11): 023139. HONG Z L, ZHAO G C, YANG M S, et al. Development of flow-induced acoustic resonance in aeroengine compressors[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 023139(in Chinese).
[2] 张俊龙, 雷红胜, 田昊, 等. 亚声速矩形射流的噪声辐射特性和声源分布[J]. 航空学报, 2020, 41(2): 123386. ZHANG J L, LEI H S, TIAN H, et al. Noise radiation characteristics and source distribution of subsonic rectangular jet[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 123386(in Chinese).
[3] WILBY J F. Aircraft interior noise[J]. Journal of Sound and Vibration, 1996, 190(3): 545-564.
[4] 戴扬, 陈藻, 孙进才. 飞机壁板结构隔声计算与实验研究[J]. 航空学报, 1993, 14(10): 523-528. DAI Y, CHEN Z, SUN J C. The computational and experimental investigation on sound insulation of aircraft sidewall structures[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(10): 523-528(in Chinese).
[5] 温卓群, 王鹏飞, 张雁, 等. 面向大尺度结构的力学超材料减振技术[J]. 航空学报, 2018, 39(增刊1): 155-159. WEN Z Q, WANG P F, ZHANG Y, et al. Vibration reduction technology of mechanical metamaterials presented to large scale structures[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(Sup 1): 155-159(in Chinese).
[6] 宋玉宝, 温激鸿, 郁殿龙, 等. 板结构振动与噪声抑制研究综述[J]. 机械工程学报, 2018, 54(15): 60-77. SONG Y B, WEN J H, YU D L, et al. Review of vibration and noise control of the plate structures[J]. Journal of Mechanical Engineering, 2018, 54(15): 60-77(in Chinese).
[7] YANG Z, MEI J, YANG M, et al. Membrane-type acoustic metamaterial with negative dynamic mass[J]. Physical Review Letters, 2008, 101(20): 204301.
[8] MA G C, SHENG P. Acoustic metamaterials: From local resonances to broad horizons[J]. Science Advances, 2016, 2(2): e1501595.
[9] YANG M, SHENG P. Sound absorption structures: from porous media to acoustic metamaterials[J]. Annual Review of Materials Research, 2017, 47(1): 83-114.
[10] 吴九汇, 马富银, 张思文, 等. 声学超材料在低频减振降噪中的应用评述[J]. 机械工程学报, 2016, 52(13): 68-78. WU J H, MA F Y, ZHANG S W, et al. Application of acoustic metamaterials in low-frequency vibration and noise reduction[J]. Journal of Mechanical Engineering, 2016, 52(13): 68-78(in Chinese).
[11] ANG L Y L, KOH Y K, LEE H P. Broadband sound transmission loss of a large-scale membrane-type acoustic metamaterial for low-frequency noise control[J]. Applied Physics Letters, 2017, 111(4): 041903.
[12] ANG L Y L, KOH Y K, LEE H P. Plate-type acoustic metamaterials: Evaluation of a large-scale design adopting modularity for customizable acoustical performance[J]. Applied Acoustics, 2019, 149: 156-170.
[13] ZHANG Y G, WEN J H, ZHAO H G, et al. Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells[J]. Journal of Applied Physics, 2013, 114(6): 063515.
[14] WANG X P, CHEN Y Y, ZHOU G J, et al. Synergetic coupling large-scale plate-type acoustic metamaterial panel for broadband sound insulation[J]. Journal of Sound and Vibration, 2019, 459: 114867.
[15] YANG Z, DAI H M, CHAN N H, et al. Acoustic metamaterial panels for sound attenuation in the 50-1000 Hz regime[J]. Applied Physics Letters, 2010, 96(4): 041906.
[16] NAIFY C J, CHANG C M, MCKNIGHT G, et al. Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses[J]. Journal of Applied Physics, 2011, 110(12): 124903.
[17] NAIFY C J, CHANG C M, MCKNIGHT G, et al. Scaling of membrane-type locally resonant acoustic metamaterial arrays[J]. The Journal of the Acoustical Society of America, 2012, 132(4): 2784-2792.
[18] SUI N, YAN X, HUANG T Y, et al. A lightweight yet sound-proof honeycomb acoustic metamaterial[J]. Applied Physics Letters, 2015, 106(17): 171905.
[19] HUANG T Y, SHEN C, JING Y. Membrane-and plate-type acoustic metamaterials[J]. The Journal of the Acoustical Society of America, 2016, 139(6): 3240-3250.
[20] MA F Y, HUANG M, WU J H. Ultrathin lightweight plate-type acoustic metamaterials with positive lumped coupling resonant[J]. Journal of Applied Physics, 2017, 121(1): 015102.
[21] MA F Y, HUANG M, WU J H. Acoustic metamaterials with synergetic coupling[J]. Journal of Applied Physics, 2017, 122(21): 215102.
[22] MA F Y, HUANG M, XU Y C, et al. Bilayer synergetic coupling double negative acoustic metasurface and cloak[J]. Scientific Reports, 2018, 8: 5906.
[23] MA F Y, HUANG M, XU Y C, et al. Bi-layer plate-type acoustic metamaterials with Willis coupling[J]. Journal of Applied Physics, 2018, 123(3): 035104.
[24] XU Y C, WU J H, CAI Y Q, et al. Acoustic bi-anisotropy in asymmetric acoustic metamaterials[J]. Applied Physics Express, 2020, 13(10): 106503.
[25] WANG X L, LUO X D, ZHAO H, et al. Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials[J]. Applied Physics Letters, 2018, 112(2): 021901.
[26] VARANASI S, BOLTON J S, SIEGMUND T H, et al. The low frequency performance of metamaterial barriers based on cellular structures[J]. Applied Acoustics, 2013, 74(4): 485-495.
[27] VARANASI S, BOLTON J S, SIEGMUND T. Experiments on the low frequency barrier characteristics of cellular metamaterial panels in a diffuse sound field[J]. The Journal of the Acoustical Society of America, 2017, 141(1): 602-610.
[28] WANG X L, ZHAO H, LUO X D, et al. Membrane-constrained acoustic metamaterials for low frequency sound insulation[J]. Applied Physics Letters, 2016, 108(4): 041905.
[29] ZHU X F, LAU S K, LU Z B, et al. Broadband low-frequency sound absorption by periodic metamaterial resonators embedded in a porous layer[J]. Journal of Sound and Vibration, 2019, 461: 114922.
[30] FAHY F, KALNINS A. Sound and structural vibration: Radiation, transmission, and response[M]. Pittsburgh: Academic Press, 1985.
[31] XUE Y T, BOLTON J S. Microstructure design of lightweight fibrous material acting as a layered damper for a vibrating stiff panel[J]. The Journal of the Acoustical Society of America, 2018, 143(6): 3254.
[32] XUE Y T, BOLTON J S, HERDTLE T, et al. Structural damping by lightweight poro-elastic media[J]. Journal of Sound and Vibration, 2019, 459: 114866.
[33] DE MELO FILHO N G R, VAN BELLE L, CLAEYS C, et al. Dynamic mass based sound transmission loss prediction of vibro-acoustic metamaterial double panels applied to the mass-air-mass resonance[J]. Journal of Sound and Vibration, 2019, 442: 28-44.
[34] MUHLESTEIN M B, SIECK C F, WILSON P S, et al. Experimental evidence of Willis coupling in a one-dimensional effective material element[J]. Nature Communications, 2017, 8: 15625.
[35] FOKIN V, AMBATI M, SUN C, et al. Method for retrieving effective properties of locally resonant acoustic metamaterials[J]. Physical Review B, 2007, 76(14): 144302.
[36] ASTM. Standard test method for measurement of normal incidence sound transmission of acoustical materials based on the transfer matrix method: ASTM E2611-2017[S]. West Conshohocken:ASTM International,2017.
[37] ISO.Acoustics; determination of sound power levels of noise sources using sound intensity; part 1: Measurement at discrete points: ISO 9614-1-1993[S]. Geneva:ISO,1993.
[38] MA F Y, XU Y C, WU J H. Shell-type acoustic metasurface and arc-shape carpet cloak[J]. Scientific Reports, 2019, 9: 8076.
Outlines

/