Fluid Mechanics and Flight Mechanics

Air wake suppression method based on direct lift and nonlinear dynamic inversion control

  • LUO Fei ,
  • ZHANG Junhong ,
  • WANG Bo ,
  • TANG Ruilin ,
  • TANG Wei
Expand
  • 1. AVIC The First Aircraft Design Institute, Xi'an 710089, China;
    2. School of Automation, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2020-09-21

  Revised date: 2020-10-13

  Online published: 2020-10-30

Abstract

In complicated combat and landing environments, the disturbances of the air wake remains one of the main sources of ship landing errors. Utilization of the rapidity and decoupling capabilities of the Direct Lift Control (DLC) in the gliding phase can significantly reduce the pilot's controlling burden during landing and improve the suppressing ability of the air wake. From the perspective of decoupling of trajectory adjustment and attitude stability, this paper proposes to implement a precision carrier landing control law scheme based on direct lift under the framework of Nonlinear Dynamic Inverse (NDI) control, and establishes an E-2C full aircraft simulation model containing ship wake disturbances for verification. The results show that the design of the carrier-based aircraft landing control law with the introduction of DLC in the NDI can achieve a stable attitude during the landing stage, and meanwhile, rapid decoupling to adjust the track error through the direct force. In the case of introducing the ship wake interference, the simulation indicates that the control law has the ability to quickly correct the glide angle error, suppress the interference of the ship's wake, and consequently, significantly improve the landing accuracy.

Cite this article

LUO Fei , ZHANG Junhong , WANG Bo , TANG Ruilin , TANG Wei . Air wake suppression method based on direct lift and nonlinear dynamic inversion control[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(12) : 124770 -124770 . DOI: 10.7527/S1000-6893.2020.24770

References

[1] National Aeronautics and Space Administration Wallops Flight Facility. Final environmental assessment E-2/C-2 field carrier landing practice operations at emporia-greensville regional airport[R]. Virginia:Department of Navy, 2013:105-249.
[2] FORTENBAUGH R. Practical integration of direct lift control into an automatic carrier landing system[C]//Guidance and Control Conference. Reston:AIAA, 1972.
[3] MEGAN E. Navy's MAGIC CARPET simplifies carrier landings:interim fielding this fall[EB/OL].[2020-09-21]. http:www.news.usni.org.org/2016/06/30/navys-magic-carpet-simplifies-carrier-landings-interim-fielding-fall.
[4] HEFFLEY R. Terminal control factors for the carrier landing task[C]//Astrodynamics Conference. Reston:AIAA, 1986.
[5] DURAND T S, WASICKO R J. Factors influencing glide path control in carrier landing[J]. Journal of Aircraft, 1967, 4(2):146-158.
[6] 杨一栋,余俊雅. 舰载飞机着舰引导与控制[M]. 北京:国防工业出版社,2007:131-148. YANG Y D, YU J Y. Carrier landing guidance and control of carrier-based aircraft[M]. Beijing:National Defense Industry Press, 2007:131-148(in Chinese).
[7] PHELPS D, GAMAGEDARA K, WALDRON J, et al. Ship air wake detection using small fixed wing unmanned aerial vehicle[C]//2018 AIAA Aerospace Sciences Meeting. Reston:AIAA, 2018.
[8] MALLON C J, MUTHIG B J, GAMAGEDARA K, et al. Measurements of ship air wake using airborne anemometers[C]//55th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2017.
[9] 焦鑫, 江驹, 王新华, 等. 基于模型参考模糊自适应的舰尾流抑制方法[J]. 南京航空航天大学学报, 2013, 45(3):396-401. JIAO X, JIANG J, WANG X H, et al. Air wake rejecting method based on model reference fuzzy adapting system control[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(3):396-401(in Chinese).
[10] ZHU Q D, YANG Z B. Design of air-wake rejection control for longitudinal automatic carrier landing cyber-physical system[J]. Computers & Electrical Engineering, 2020, 84:106637.
[11] DENHAM J W. Project MAGIC CARPET:"advanced controls and displays for precision carrier landings"[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016.
[12] SHAFER D M, PAUL R C, KING M J, et al. Aircraft carrier landing demonstration using manual control by a ship-based observer[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019.
[13] 段卓毅, 王伟, 耿建中, 等. 舰载机人工进场着舰精确轨迹控制技术[J]. 航空学报, 2019, 40(4):622328. DUAN Z Y, WANG W, GENG J Z, et al. Precision trajectory manual control technologies for carrier-based aircraft approaching and landing[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):622328(in Chinese).
[14] 甄子洋, 王新华, 江驹, 等. 舰载机自动着舰引导与控制研究进展[J]. 航空学报, 2017, 38(2):020435. ZHEN Z Y, WANG X H, JIANG J, et al. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):020435(in Chinese).
[15] 吴文海, 汪节, 高丽, 等. MAGIC CARPET着舰技术分析[J]. 系统工程与电子技术, 2018, 40(9):2079-2091. WU W H, WANG J, GAO L, et al. Analysis on MAGIC CARPET carrier landing technology[J]. Systems Engineering and Electronics, 2018, 40(9):2079-2091(in Chinese).
[16] DURHAM W, BORDIGNON K A, BECK R. Aircraft control allocation[M]. Chichester:John Wiley & Sons, Ltd, 2016.
[17] 赵帅, 段卓毅, 李杰, 等. 涡桨飞机螺旋桨滑流气动干扰效应及流动机理[J]. 航空学报, 2019, 40(4):122469. ZHAO S, DUAN Z Y, LI J, et al. Interference effects and flow mechanism of propeller slipstream for turboprop aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122469(in Chinese).
[18] 文传源. 现代飞行控制[M]. 北京:北京航空航天大学出版社, 2004:175-181. WEN C Y. Modern aircraft control[M]. Beijing:Beihang University Press, 2004:175-181(in Chinese).
[19] WENDELL W K. Simulator evaluation of a flight-path-angle control system for a transport airplane with direct lift control:NASA TP 1116[R]. Washington, D.C.:NASA, 1978.
[20] 李导. 基于非线性动态逆方法的飞机控制律设计与应用研究[D]. 西安:西北工业大学, 2015:61-64. LI D. The research and application of nonlinear dynamic control design for aircraft[D]. Xi'an:Northwestern Polytechnical University, 2015:61-64(in Chinese).
[21] SNELL S A, ENNS D F, GARRARD W L. Nonlinear inversion flight control for a super maneuverable aircraft[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(4):976-984.
[22] AZAM M, SINGH S N. Invertibility and trajectory control for nonlinear maneuvers of aircraft[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(1):192-200.
[23] BUGAJSKI D J, ENNS D F. Nonlinear control law with application to high angle-of-attack flight[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(3):761-767.
[24] MILLER C J. Nonlinear dynamic inversion baseline control law:architecture and performance predictions[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2011.
[25] MILLER C J. Nonlinear dynamic inversion baseline control law:flight-test results for the full-scale advanced systems testbed F/A -18 aircraft[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2011.
[26] 陈海兵, 张曙光, 方振平. 加速度反馈的隐式动态逆鲁棒非线性控制律设计[J]. 航空学报, 2009, 30(4):597-603. CHEN H B, ZHANG S G, FANG Z P. Implicit NDI robust nonlinear control design with acceleration feedback[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4):597-603(in Chinese).
[27] 魏扬, 徐浩军, 薛源, 等. 基于神经网络自适应动态逆的结冰飞机飞行安全边界保护方法[J]. 航空学报, 2019, 40(5):122488. WEI Y, XU H J, XUE Y, et al. Aircraft flight safety envelope protection under icing conditions based on adaptive neural network dynamic inversion[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):122488(in Chinese).
[28] 党小为, 唐鹏, 孙洪强, 等. 基于角加速度估计的非线性增量动态逆控制及试飞[J]. 航空学报, 2020, 41(4):323534. DANG X W, TANG P, SUN H Q, et al. Incremental nonlinear dynamic inversion control and flight test based on angular acceleration estimation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4):323534(in Chinese).
[29] Department of Defense. Flying qualities of piloted aircraft:MIL-STD-1797B[R].Washington, D.C.:US Department of Defense, 2006.
Outlines

/