Review

Driving mechanism of flapping wing aircraft: Review and prospect

  • ZHANG Hongzhi ,
  • SONG Bifeng ,
  • SUN Zhongchao ,
  • WANG Liang
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2020-03-28

  Revised date: 2020-04-21

  Online published: 2020-05-21

Supported by

Key Research and Development Plan of the Ministry of Science and Technology (2017YFB1300102);Major Project of National Natural Science Foundation of China(U16113227);National Natural Science Foundation of China(51905431)

Abstract

The driving mechanism of the flapping wing aircraft, being the power device of the aircraft, determines the overall performance of the aircraft. With increasingly high requirements for the performance of flapping wing aircraft, researchers throughout the world have made increasingly deep explorations into the working principle of the driving mechanism with remarkable progresses in the design theories and methods. Recent years have witnessed the emergence of many new and efficient driving mechanisms. This article studies and summarizes the application status of traditional purely mechanical driving mechanisms and the mechanisms based on smart materials that have appeared in recent years with an analysis of their characteristics and development trends. The application of flexible structure in the field of flapping wing aircraft and its role in the driving mechanism are also introduced and analyzed.

Cite this article

ZHANG Hongzhi , SONG Bifeng , SUN Zhongchao , WANG Liang . Driving mechanism of flapping wing aircraft: Review and prospect[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(2) : 24024 -024024 . DOI: 10.7527/S1000-6893.2020.24024

References

[1] GERDES J W, GUPTA S K, WILKERSON S. A review of bird-inspired flapping wing miniature air vehicle designs[J]. Journal of Mechanism and Robotics, 2012, 4(2):021003.1-021003.11.
[2] 李峙岳,昂海松.仿鸟扑动飞行器传动机构设计[J].江苏航空,2012(3):20-23. LI Z Y, ANG H S. Design of transmission mechanism of bird-like flapping aircraft[J].Jiangsu Aviation, 2012(3):20-23(in Chinese).
[3] 周凯,方宗德,曹雪梅,等.单曲柄双摇杆扑翼驱动机构的优化设计[J].航空动力学报,2008,23(1):184-188. ZHOU K, FANG Z D, CAO X M,et al. Optimal design of single crank double rocker flapping-wing drive mechanism[J].Journal of Aerospace Power, 2008,23(1):184-188(in Chinese).
[4] PORNSIN-SIRIRAK T, TAI Y, HO C, et al. Microbat:A palm-sized electrically powered ornithopter[C]//Proceedings of the NASA/JPL Workshop on Biomorphic Robotics.Washington,D.C.:NASA,2001.
[5] TSAI B J, FU Y C. Design and aerodynamic analysis of a flapping-wing micro aerial vehicle[J]. Aerospace Science and Technology, 2009, 13(7):383-392.
[6] 张亚锋,宋笔锋,马红萍,等.仿生扑翼机构的优化设计[J].机械设计与研究,2008(4):23-25. ZHANG Y F, SONG B F, MA H P, et al.Optimization design of bionic flapping-wing mechanism[J]. Mechanical Design & Research, 2008(4):23-25(in Chinese).
[7] 孙泽江. 扑翼结构的仿生飞行器研究[D].沈阳:沈阳理工大学,2017:23-24. SUN Z J. Research on bionic aircraft with flapping wing structure[D]. Shenyang:Shenyang Ligong University, 2017:23-24(in Chinese).
[8] 苏汉平. 仿鸟扑翼飞行器结构设计与气动特性研究[D].天津:中国民航大学,2017:34-42. SU H P. Structural design and aerodynamic characteristics of bird-like flapping-wing aircraft[D].Tianjin:Civil Aviation University of China, 2017:34-42(in Chinese).
[9] 吉爱红,沈欢.双曲柄摇杆无相差双对翼扑翼飞行器及其工作方法:CN108248856A[P]. 2018-07-06. JI A H, SHEN H. Double-crank rocker without phase difference double-wing flapping-wing aircraft and its working method:CN108248856A[P]. 2018-07-06(in Chinese).
[10] HSU C K, EVANS J, VYTLA S, et al. Development of flapping wing micro air vehicles -design, CFD, experiment and actual flight[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA,2010.
[11] 陈世杰. 扑翼式飞行器的驱动机构研究[D].西安:西安工业大学,2015:9-10. CHEN S J. Research on the driving mechanism of flapping-wing aircraft[D]. Xi'an:Xi'an Technological University, 2015:9-10(in Chinese).
[12] 徐兵,朱伟平,陈强,等. 一种曲柄滑块式扑翼飞行器:CN205707352U[P]. 2016-11-23. XU B, ZHU W P, CHEN Q, et al. A crank-slider flapping-wing aircraft:CN205707352U[P]. 2016-11-23(in Chinese).
[13] 胡峪,符旭阳,吴成富,等. 一种摇橹式扑翼控制机构:CN108275270A[P]. 2018-07-13. HU Y, FU X Y, WU C F, et al. A flapping-wing shaking control mechanism:CN108275270A[P]. 2018-07-13(in Chinese).
[14] 刘聪. 仿生扑翼飞行器结构设计及其动力学仿真研究[D]. 哈尔滨:哈尔滨工业大学,2010:18-21. LIU C. Structural design and dynamics simulation study of bionic flapping-wing vehicle[D]. Harbin:Harbin Institute of Technology, 2010:18-21(in Chinese).
[15] 姜洪利. 两段式扑翼飞行器结构设计与仿真分析[D].哈尔滨:哈尔滨工业大学,2017:18-33. JIANG H L. Structural design and simulation analysis of two-stage flapping-wing aircraft[D]. Harbin:Harbin Institute of Technology, 2017:18-33(in Chinese).
[16] 赵志芳,齐明思,冯靖凯,等.基于四连杆机构的扑翼设计与仿真[J].机械传动,2017,41(11):87-91. ZHAO Z F, QI M S, FENG J K, et al. Design and simulation of flapping wing based on four-bar linkage mechanism[J]. Journal of Mechanical Transmission, 2017, 41(11):87-91(in Chinese).
[17] 黄鸣阳,肖天航,昂海松.多段柔性变体扑翼飞行器设计[J].航空动力学报,2016,31(8):1838-1844. HUANG M Y, XIAO T H, ANG H S. Design of multi-segment flexible variant flapping-wing aircraft[J]. Journal of Aerospace Power, 2016,31(8):1838-1844(in Chinese).
[18] 华兆敏,侯宇,朱建阳,等.三段式扑翼机构设计及气动力特性分析[J].计算机仿真,2019,36(5):42-47,72. HUA Z M, HOU Y, ZHU J Y, et al. Design of three-stage flapping wing mechanism and analysis of aerodynamic characteristics[J].Computer Simulation, 2019,36(5):42-47,72(in Chinese).
[19] 徐一村,宗光华,毕树生,等.空间曲柄摇杆扑翼机构设计分析[J].航空动力学报,2009,24(1):204-208. XU Y C, ZONG G H, BI S S, et al. Design analysis of spatial crank rocker flapping-wing mechanism[J]. Journal of Aerospace Power, 2009,24(1):204-208(in Chinese).
[20] 魏榛,贾立超,杨基明.一种平行曲柄连杆扑翼机构的设计、优化与实现[J].力学与实践,2011,33(2):62-66,95. WEI Z, JIA L C, YANG J M. Design, optimization and implementation of a parallel crank connecting rod flapping-wing mechanism[J]. Mechanics in Engineering, 2011,33(2):62-66,95(in Chinese).
[21] 魏榛,高东奇,贾立超,等.一种用于研究鹰蛾悬停飞行的扑翼实验装置[J].实验力学,2010,25(4):393-400. WEI Z, GAO D Q, JIA L C, et al. A flapping-wing experimental device for studying hovering flight of hawk moth[J]. Journal of Experimental Mechanics, 2010,25(4):393-400(in Chinese).
[22] Osaka slow fliers club[EB/OL].(2008-01-04)[2019-12-04]. http://blog.goo.ne.jp/flappingwing
[23] DE CROON G C H E, DE CLERCQ K M E, RUIJSINK R, et al. Design, aerodynamics, and vision-based control of the DelFly[J]. International Journal of Micro Air Vehicles, 2009, 1(2):71-97.
[24] GEORGE R B. Design and analysis of a flapping wing mechanism for optimization[D].Utah:Brigham Young University, 2015:25-38.
[25] 李博扬. 扑翼三维扑动实验系统与高效机制研究[D].西安:西北工业大学,2015:19-21. LI B Y. Three-dimensional flapping experiment system and high-efficiency mechanism research[D]. Xi'an:Northwestern Polytechnical University, 2015:19-21(in Chinese).
[26] 王利光,宋笔锋,杨文青,等. 一种圆柱凸轮扑翼驱动机构:CN202138538U[P]. 2012-02-08. WANG L G, SONG B F, YANG W Q, et al. A cylindrical cam flapping-wing driving mechanism:CN202138538U[P]. 2012-02-08(in Chinese).
[27] 丁长涛,周泽斌,陈伟,等. 一种圆柱凸轮万向节式仿鸟扑翼飞行装置:CN108454850A[P]. 2018-08-28. DING C T, ZHOU Z B, CHEN W, et al. A cylindrical cam universal joint type bird-like flapping-wing flying device:CN108454850A[P]. 2018-08-28(in Chinese).
[28] 丁长涛,徐日良,钱海英,等. 一种线轮调幅卷膜式仿鸟扑翼飞行装置:CN108275269A[P]. 2018-07-13. DING C T, XU R L, QIAN H Y, et al. A reel-type roll-to-roll film-like bird flapping-wing flying device:CN108275269A[P]. 2018-07-13(in Chinese).
[29] KEENNON M, KLINGEBIEL K, WON H. Development of the nano hummingbird:A tailless flapping wing micro air vehicle[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA,2012.
[30] 付鹏,杨文青,王利光,等. 一种用于微型扑翼实验的驱动装置:CN104570924A[P]. 2015-04-29. FU P, YANG W Q, WANG L G, et al. A driving device for micro flapping-wing experiment:CN104570924A[P]. 2015-04-29(in Chinese).
[31] 付鹏. 微型扑翼飞行器风洞实验方法与应用研究[D].西安:西北工业大学,2017:18-21. FU P. Wind tunnel experimental method and application research of micro flapping wing aircraft[D]. Xi'an:Northwestern Polytechnical University, 2017:18-21(in Chinese).
[32] 冷烨,张卫平,周岁,等.仿生蝴蝶飞行器设计分析[J].机械设计与研究,2019,35(4):32-35,42. LENG Y, ZHANG W P, ZHOU S, et al. Design analysis of bionic butterfly aircraft[J]. Mechanical Design & Research, 2019,35(4):32-35,42(in Chinese).
[33] YAN X J, LIU Z, QI M, et al. Low voltage electromagnetically driven artificial flapping wings[C]//2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS).Piscataway:IEEE Press, 2016:1149-1152.
[34] 张钰,刘志伟.基于电磁驱动的微扑翼飞行器驱动器振动特性[J].传感器与微系统,2019,38(3):11-13. ZHANG Y, LIU Z W. Vibration characteristics of micro flapping-wing aircraft actuator based on electromagnetic drive[J]. Transducer and Microsystem Technology, 2019,38(3):11-13(in Chinese).
[35] 方勇纯,钱辰,胡天帅,等. 一种基于电磁致动器驱动的微型扑翼机构:CN109823533A[P]. 2019-05-31. FANG Y C, QIAN C, HU T S, et al. A micro flapping-wing mechanism driven by electromagnetic actuator:CN109823533A[P]. 2019-05-31(in Chinese).
[36] MENG K, ZHANG W, CHEN W, et al. The design and micromachining of an electromagnetic MEMS flapping-wing micro air vehicle[J]. Microsystem Technologies, 2012, 18(1):127-136.
[37] LIU Z W, YAN X J, QI M J, et al. Design of flexible hinges in electromagnetically driven artificial flapping-wing insects for improved lift force[J]. Micromech, Microeng, 2019,29(1):015011.
[38] 张卫平,楼星粱,邹阳,等. 可变共振频率电磁驱动式双驱动微扑翼飞行器:CN104260887A[P]. 2015-01-07. ZHANG W P, LOU X L, ZOU Y, et al. Variable resonance frequency electromagnetically driven dual-drive micro flapping wing aircraft:CN104260887A[P]. 2015-01-07(in Chinese).
[39] YOON S, KANG L H, JO S. Development of air vehicle with active flapping and twisting of wing[J]. Jilin University Journal of Bionic Engineering:English Version, 2011, 8(1):1-9.
[40] 宋海龙. 微型扑翼飞行器传动系统设计及新型扑翼形式概念研究[D]. 西安:西北工业大学,2005:48-51. SONG H L. The design of the transmission system of the mini flapping wing aircraft and the conceptual research of the new flapping wing form[D]. Xi'an:Northwestern Polytechnical University, 2005:48-51(in Chinese).
[41] ZHANG X M, CHAU F S, QUAN C, et al. A study of the static characteristics of a torsion micromirror[J]. Sensors and Actuators A Physical, 2001, 90(1-2):73-81.
[42] DEGANI O, SOCHER E, LIPSON A, et al. Pull-in study of an electrostatic torsion microactuator[J]. Journal of Microelectromechanical Systems, 1998, 7(4):373-379.
[43] DEGANI O, NEMIROVSKY Y. Design considerations of rectangular electrostatic torsion actuators based on new analytical pull-in expressions[J]. Journal of Microelectromechanical Systems, 2002, 11(1):20-26.
[44] 侯宇,方宗德,刘岚,等.微扑翼飞行器静电驱动机构的机电耦合特性研究[J].机械科学与技术,2005(3):303-306,370. HOU Y, FANG Z D, LIU L, et al. Study on the electromechanical coupling characteristics of electrostatic drive mechanism of micro flapping wing aircraft[J]. Mechanical Science and Technology For Aerospace Engineering, 2005(3):303-306,370(in Chinese).
[45] SUZUKI K, SHIMOYAMA I, MIURA H. Insect-model based microrobot with elastic hinges[J]. Journal of Microelectromechanical Systems, 1994, 3(1):4-9.
[46] 杨艺,车云龙.毫米级静电微扑翼驱动器的结构设计、工艺与测试[J].传感器与微系统,2018,37(1):91-95. YANG Y, CHE Y L. Structural design, process and test of millimeter-level electrostatic micro flapping wing actuator[J]. Transducer and Microsystem Technology, 2018,37(1):91-95(in Chinese).
[47] DICKINSON M H. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284(5422):1954-1960.
[48] YAN X J, QI M, LIN L. Self-lifting artificial insect wings via electrostatic flapping actuators[C]//Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). Piscataway:IEEE Press, 2015.
[49] 杨大智. 智能材料与智能系统[M].天津:天津大学出版社,2000:1-15. YANG D Z. Intelligent materials and intelligent systems[M]. Tianjin:Tianjin University Press, 2000:1-15(in Chinese).
[50] 刘仁鑫,王万章.压电材料在汽车技术中的应用[J].拖拉机与农用运输车,2007(5):4-5. LIU R X, WANG W Z. Application of piezoelectric materials in automobile technology[J]. Tractor & Farm Transporter, 2007(5):4-5(in Chinese).
[51] 李道春,向锦武,徐威,等. 一种微型扑翼关节:CN106240816A[P]. 2016-12-21. LI D C, XIANG J W, XU W, et al. A macro flapping-wing joint:CN106240816A[P]. 2016-12-21(in Chinese).
[52] 田思玉. 压电扑翼微型飞行器翅翼设计与动力学分析[D].成都:电子科技大学,2017:14-17. TIAN S Y. Design and dynamic analysis of the wing wing of piezoelectric flapping wing micro aircraft[D]. Chengdu:University of Electronic Science and Technology of China, 2017:14-17(in Chinese).
[53] 刘岚,方宗德,侯宇,等.仿生微扑翼飞行器的翅翼设计与优化[J].机械科学与技术,2005(3):330-334. LIU L, FANG Z D, HOU Y, et al. Wing design and optimization of bionic micro flapping wing aircraft[J]. Mechanical Science and Technology For Aerospace Engineering, 2005(3):330-334(in Chinese).
[54] 袁晰,王晓宇,王浩威,等.电压特性对压电纤维复合物驱动性能的影响[J].中国有色金属学报,2019,29(2):343-349. YUAN X, WANG X Y, WANG H W, et al. The influence of voltage characteristics on the driving performance of piezoelectric fiber composites[J]. The Chinese Journal of Nonferrous Metals, 2019,29(2):343-349(in Chinese).
[55] LIN X J, ZHOU K C, ZHANG X Y, et al. Development, modeling and application of piezoelectric fiber composites[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(1):98-107.
[56] 吴高华,杨依领,张金,等. 柔性压电纤维驱动的仿生扑翼机器人:CN110143278A[P]. 2019-08-20. WU G H, YANG Y L, ZHANG J, et al. Bionic flapping wing robot driven by flexible piezoelectric fiber:CN110143278A[P]. 2019-08-20(in Chinese).
[57] PENG Y, LIU L, ZHANG Y, et al. A smooth impact drive mechanism actuation method for flapping wing mechanism of bio-inspired micro air vehicles[J]. Microsystem Technologies, 2017(2):1-7.
[58] SITTI M. PZT actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax[C]//Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on.Piscataway:IEEE Press, 2001.
[59] 周皓宇,张祥,黄鸣阳.人工肌肉及其在扑翼飞行技术中的应用探析[J].科技创新导报,2015,12(20):84-85. ZHOU H Y, ZHANG X, HUANG M Y. Analysis of artificial muscle and its application in flapping wing flight technology[J]. Science and Technology Innovation Herald, 2015,12(20):84-85(in Chinese).
[60] 李晓锋,梁松苗,李艳芳,等.仿生材料电活性聚合物"人工肌肉"的研究进展[J].高分子通报,2008(8):134-145. LI X F, LIANG S M, LI Y F, et al. Research progress of bionic material electroactive polymer "artificial muscle"[J]. Polymer Bulletin, 2008(8):134-145(in Chinese).
[61] 苏生荣,应申舜.面向机器人驱动的人工肌肉技术研究进展[J].机械科学与技术,2009,28(6):834-840. SU S R, YING S S. Research progress of robot-driven artificial muscle technology[J]. Mechanical Science and Technology For Aerospace Engineering, 2009,28(6):834-840(in Chinese).
[62] 徐兵. 基于人工肌肉的微扑翼驱动技术研究[D]. 厦门:厦门大学,2014:53-55. XU B. Research on driving technology of micro flapping wing based on artificial muscle[D]. Xiamen:Xiamen University, 2014:53-55(in Chinese).
[63] 李洪谊,刘意杨,宋小康,等. 一种人工肌肉与电磁混合驱动的仿蝇机器人:CN101934520A[P]. 2011-01-05. LI H Y, LIU Y Y, SONG X K, et al. Fly-like robot driven by artificial muscle and electromagnetic hybrid driving:CN101934520A[P]. 2011-01-05(in Chinese).
[64] 孙霁宇,宋泽来,吴薇,等. 一种用于可折叠扑翼微飞行器的自调节变形可折叠翼机构:CN208053632U[P]. 2018-11-06. SUN J Y, SONG Z L, WU W, et al. A self-adjusting deformable foldable wing mechanism for foldable flapping wing micro aircraft:CN208053632U[P]. 2018-11-06(in Chinese).
[65] KIM H I, KIM D K, HAN J H. Study of flapping actuator modules using IPMC[J]. SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring, 2007, 6524:65241A-65241A-12.
[66] ENTOMOPTER A, MARS O, COLOZZA A,et al. Planetary exploration using biomimetics:an entomo-pterforflight on mars[C]//NIAC Fellows Conference. Washington,D.C.:NASA AmesResearch Center, 2001.
[67] OGAWA N, HASHIMOTO M, TAKASAKI M, et al. Characteristics evaluation of PVC gel actuators[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems.Piscataway:IEEE Press, 2009.
[68] 张威,刘光泽,张博利.扑翼飞行器具有弹性阻尼扑动机构的能耗对比分析与研究[J].航空学报, 2018, 39(9):421966. ZHANG W, LIU G Z, ZHANG B L. Energy consumption comparative analysis and research of flapping wing vehicle with elastic damping flapping mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):421966(in Chinese).
[69] LAU G K, CHIN Y W, GOH T W, et al. Dipteran-insect-inspired thoracic mechanism with nonlinear stiffness to save inertial power of flapping-wing flight[J]. IEEE Transactions on Robotics, 2014, 30(5):1187-1197.
[70] 屠凯,侯宇,华兆敏,等.柔性空间扑翼机构的刚柔耦合动力特性分析[J].机械设计与制造,2019(7):215-219. TU K, HOU Y, HUA Z M, et al. Analysis of rigid-flexible coupling dynamic characteristics of flexible spatial flapping wing mechanism[J]. Machinery Design & Manufacture, 2019(7):215-219(in Chinese).
[71] NIAN P, SONG B F, XUAN J L, et al. A wind tunnel experimental study on the flexible flapping wing with an attached airfoil to the root[J]. IEEE Access, 2019(7):47891-47903.
Outlines

/