Based on the inspiration from micro biological structure in nature, a novel bio-inspired negative Poisson’s ratio (NPR) auxetic reentrant honeycomb (ARH) is designed, and the crashworthiness is studied numerically. Combining both graded structure of bamboo and concentric-cell structure of coconut palm, two types of unidirectionally and two types of bidirectionally graded concentric ARH are proposed. The present graded/concentric structure design not only induces the progressive structural crushing behaviors, but improves the specific energy-absorption capacity because of low equivalent wall-thickness. The plateau stress and energy-absorption characteristics of the bio-inspired ARH structure are studied in comparison with traditional ARH structure. Furthermore, the coupled crushing deformation modes, shrinkage deformation mechanism and NPR effect are systematically analyzed to reveal the structural enhancement mechanism. Results show that the predicted stress-strain responses and crushing deformation modes correlate well with the reference results. Relative to conventional ARH, the graded concentric ARH has higher plateau stress and specific energy-absorption. The gradient variations are presented for both plateau stress and crushing deformation modes. The gradient direction has a significant effect on the crushing deformation modes and deformation order of every layer, the bidirectionally graded concentric ARH has higher energy absorption capacity than the unidirectionally graded concentric ARH, and the shrinkage deformation is significantly affected by the number of concentric-cell.
[1] 陈尚军, 秦庆华, 张威, 等. 低速冲击下金属蜂窝夹芯板抗侵彻性能的实验研[J]. 航空学报, 2018, 39(2):221483. CHEN S J. QIN Q H, ZHANG W, et al. Experimental investigations on perforations of aluminum honeycomb sandwiches under low-velocity impact[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):221483(in Chinese).
[2] WU Y, LIU Q, FU J, et al. Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels[J]. Composites Part B:Engineering 2017, 121:122-133.
[3] 程文杰, 周丽, 张平, 等. 零泊松比十字形混合蜂窝设计分析及其在柔性蒙皮中的应用[J]. 航空学报, 2015, 36(2):680-690. CHENG W J, ZHOU L, ZHANG P, et al. Design and analysis of a zero Poisson's ratio mixed cruciform honeycomb and its application in flexible skin[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):680-690(in Chinese).
[4] 贾光辉, 段枭. 蜂窝夹层板BLE的一种增强型协同优化建模方法[J]. 航空学报, 2015, 36(7):2260-2268. JIA G H, DUAN X. Enhanced collaborative optimization modeling method of BLE about honeycomb sandwich panel[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2260-2268(in Chinese).
[5] 石姗姗, 陈秉智, 陈浩然, 等. Kevlar短纤维增韧碳纤维/铝蜂窝夹芯板三点弯曲与面内压缩性能[J]. 复合材料学报, 2017, 34(9):1953-1959. SHI S S, CHEN B Z, CHEN H R, et al. Three-point bending and in-plane compression properties of carbon-fiber/aluminum-honeycomb sandwich panels with short-Kevlar-fiber toughening[J]. Acta Materiae Compositae Sinica 2017, 34(9):1953-1959(in Chinese).
[6] 齐佳旗, 段玥晨, 铁瑛, 等. 结构参数对CFRP蒙皮-铝蜂窝夹层板低速冲击性能的影响[J]. 复合材料学报, 2020,37(6):1352-1363. QI J Q, DUAN Y C, TIE Y, et al. Effect of structural parameters on low-velocity impact properties of CFRP skin-aluminum honeycomb sandwich panel[J]. Acta Materiae Compositae Sinica, 2020,37(6):1352-1363.
[7] 龙凯, 谷先广, 韩丹. 考虑泊松效应的材料/结构一体化设计方法[J]. 复合材料学报, 2017, 34(6):1252-1260. LONG K, GU X G, HAN D. A concurrent design method for microstructures of materials and macrostructures by considering the Poisson effect[J]. Acta Materiae Compositae Sinica, 2017, 34(6):1252-1260(in Chinese).
[8] 卢子兴, 王欢, 杨振宇. 星型-箭头蜂窝结构的面内动态压溃行为[J]. 复合材料学报, 2019, 36(8):1893-1900. LU Z X, WANG H, YANG Z Y. In-plane dynamic crushing of star-arrowhead honeycomb structure[J]. Acta Materiae Compositae Sinica, 2019, 36(8):1893-1900(in Chinese).
[9] 周宏元,贾昆程,王小娟. 负泊松比三明治结构填充泡沫混凝土的面内压缩性能[J]. 复合材料学报, 2020,37(8):2005-2014. ZHOU H Y, JIA K C, WANG X J. In-plane compression performance of foam concrete filled with sandwich structure with negative Poisson's ratio[J]. Acta Materiae Compositae Sinica, 2020,37(8):2005-2014(in Chinese).
[10] 秦浩星,杨德庆. 任意负泊松比超材料结构设计的功能基元拓扑优化法[J]. 复合材料学报, 2018, 35(4):1014-1023. QIN H X, YANG D Q. Functional element topology optimal method of metamaterial design with arbitrary negative Poisson's ratio[J]. Acta Materiae Compositae Sinica, 2018, 35(4):1014-1023(in Chinese).
[11] 于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13):1-14. YU J J, XIE Y, PEI X. State-of-art of metamaterials with negative Poisson's ratio[J]. Journal of Mechanical Engineering, 2018, 54(13):1-14(in Chinese).
[12] 邓小林, 刘旺玉. 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析[J]. 振动与冲击, 2017, 36(13):103-109. DENG X L, LIU W Y. In-plane impact dynamic analysis for a sinusoidal curved honeycomb structure with negative Poisson's ratio[J]. Journal of Vibration and Shock, 2017, 36(13):103-109(in Chinese).
[13] 侯秀慧, 尹冠生. 负泊松比蜂窝抗冲击性能分析[J]. 机械强度, 2016, 38(5):905-910. HOU X H, YIN G S. Dynamic crushing performance analysis for auxetic honeycomb structure[J]. Journal of Mechanical Strength, 2016, 38(5):905-910(in Chinese).
[14] XIAO D, KANG X, LI Y, et al. Insight into the negative Poisson's ratio effect of metallic auxetic reentrant honeycomb under dynamic compression[J]. Materials Science and Engineering:A, 2019, 763:138151.
[15] HU L L, ZHOU M Z, DENG H. Dynamic crushing response of auxetic honeycombs under large deformation:theoretical analysis and numerical simulation[J]. Thin-Walled Structures, 2018, 131:373-384.
[16] HOU X, DENG Z C, ZHANG K. Dynamic crushing strength analysis of auxetic honeycombs[J]. Acta Mechanica Solida Sinica, 2016, 29(5):490-501.
[17] TAN H L, HE Z C, LI K X, et al. In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson's ratio[J]. Composite Structures, 2019, 229:111415.
[18] DONG Z, LI Y, ZHAO T, et al. Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb[J]. Materials and Design, 2019, 182:108036.
[19] XIAO D, DONG Z, LI Y, et al. Compression behavior of the graded metallic auxetic reentrant honeycomb:Experiment and finite element analysis[J]. Materials Science and Engineering:A, 2019, 758:163-171.
[20] LIU Q, MA J, HE Z, et al. Energy absorption of bio-inspired multi-cell CFRP and aluminum square tubes[J]. Composites Part B:Engineering, 2017, 121:134-144.
[21] HABIBI M K, SAMAEI A T, GHESHLAGHI B G, et al. Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure-Underlying mechanisms[J]. Acta Biomaterialia, 2015, 16:178-186.