UAV tight formation refers to the formation whose lateral distance between the UAVs is within one to two times of the wingspan. It has attracted considerable attention because of its effective improvement in the aerodynamic performance of UAVs in formation. In this paper, the aerodynamic coupling effect of the UAVs in tight formation is studied, and the state-space equation in three-dimensional space is established to describe the relative motion of two UAVs. The optimal formation configuration of two UAVs in close formation is deduced, where the combination of the artificial potential field method and formation control is used as the indirect control loop in the control system, and the basic pigeon inspired opbimization algorithm is calculated. The optimization defect of the algorithm is improved by quantum behavior rules. The improved opbimization pigeon inspired algorithm and the UAV control variables are combined as the direct control loop in the control system. Finally, the effectiveness of the control system is verified by simulation comparisons.
XU Bo
,
ZHANG Dalong
. Tight formation flight control of UAVs based on pigeon inspired algorithm optimization by quantum behavior[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020
, 41(8)
: 323722
-323722
.
DOI: 10.7527/S1000-6893.2020.23722
[1] JENNIFER L H, JAMES E M, NORMA V C. The NASA Dryden flight test approach to an aerial refueling system:NASA/TM-2005-212859[R]. Washington, D.C.:NASA, 2015.
[2] BANGASH Z, SANCHEZ R, AHMED A, et al. Aerodynamics of formation flight[C]//42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2004.
[3] BUZOGANY L E, PACHTER M, AZZO J J D. Automated control of aircraft in formation flight[C]//Guidance, Navigation and Control Conference. Reston:AIAA, 1992.
[4] PROUD A W, MEIR P, JOHN J D A. Close formation flight control:AIAA-1999-4207[R]. Reston:AIAA, 1999:1231-1246.
[5] PACHTER M, D'SZZO J J, PROUD A W. Tight formation flight control[J]. Journal of Guidance, Control, and Dynamic, 2001, 24(2):246-254.
[6] ZHANG Q R, LIU H H T. Robust nonlinear control of close formation flight[EB/OL]. (2019-04-16)[2019-12-01].https:arxiv.org/abs/1094.07479v1.
[7] YU Z, QU Y, ZHANG Y. Safe control of trailing UAV in close formation flight against actuator fault and wake vortex effect[J]. Aerospace Science and Technology, 2018, 77(6):189-205.
[8] 牟勇飚. 无人机编队中的气动耦合问题研究[D]. 西安:西北工业大学, 2006:30-45. MOU Y B. Research on aerodynamic coupling in UAV formation[D]. Xi'an:Northwestern Polytechnical University, 2006:30-45(in Chinese).
[9] 赵锋, 杨伟, 杨朝旭. 无人机紧密编队飞行控制仿真研究[J]. 航空科学技术, 2012(5):18-21. ZHAO F, YANG W, YANG C X. Close formation flight control of UAVs[J]. Aeronautical Science Technology, 2012(5):18-21(in Chinese).
[10] 刘成功. 无人机仿生紧密编队飞行控制技术研究[D]. 南京:南京航空航天大学, 2009:21-33. LIU C G. Research on biomimetic close formation flight control of UAVs[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009:21-33(in Chinese).
[11] 万婧. 无人机自主编队飞行控制系统设计方法及应用研究[D]. 上海:复旦大学, 2009:39-63. WAN J. Research on design method and application of UAV autonomous formation flight control system[D]. Shanghai:Fudan University, 2009:39-63(in Chinese).
[12] ENGELBRECHT A, 谭营. 计算群体智能基础[M]. 北京:清华大学出版社, 2009:1-15. ENGELBRECHT A, TAN Y. Fundamentals of computational swarm intelligence[M]. Beijing:Tsinghua University Press, 2009:1-15(in Chinese).
[13] LIU C G, YAN X H, LIU C Y, et al. The wolf colony algorithm and its application[J]. Chinese Journal of Electronics, 2011, 20(2):210-216.
[14] PAN W T. A new fruit fly optimization algorithm:Taking the financial distress model as an example[J]. Knowledge-Based Systems, 2012, 26:69-74.
[15] KARABOGA D. An idea based on honey bee swarm for numerical optimization[D]. Erciyes:Erciyes University,2005.
[16] DUAN H B, QIAO P. Pigeon-inspired optimization:A new swarm intelligence optimizer for air robot path planning[J]. International Journal of Intelligent Computing & Cybernetics, 2014, 7:24-37.
[17] 段海滨, 邱华鑫, 范彦铭. 基于捕食逃逸鸽群优化的无人机紧密编队协同控制[J]. 中国科学:技术科学, 2015, 45(6):559-572. DUAN H B, QIU H X, FAN Y M. Unmanned aerial vehicle close formation cooperative control based onpredatory escaping pigeon-inspired optimization[J]. Scientia Sinica Technologica, 2015, 45(6):559-572(in Chinese).
[18] 王晶, 顾维博, 窦立亚. 基于Leader-Follower的多无人机编队轨迹跟踪设计[J].航空学报,2020,41(S1):723728. WANG J, GU W B, DOU L Y. Leader-Follower formation control of multiple UAVs with trajectory tracking design[J]. Acta Aeronautica et Astronautica Sinica,2020,41(S1):723728(in Chinese).
[19] 张民, 夏卫政, 黄坤, 等. 基于Leader-Follower编队的无人机协同跟踪地面目标制导律设计[J]. 航空学报, 2018, 39(2):321497. ZHANG M, XIA W Z, HUANG K, et al. Guidance law for cooperative tracking of a ground target based on leader-follower formation of UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):321497(in Chinese).
[20] 杨宇. 多机器人编队群集运动控制的研究[D]. 武汉:华中科技大学, 2007:21-40. YANG Y. Research on formation and flocking control of multiple robots[D]. Wuhan:Huazhong University of Science and Technology, 2007:21-40(in Chinese).
[21] 孙俊. 量子行为粒子群优化:原理及其应用[M]. 北京:清华大学出版社, 2011:31-51. SUN J. Quantum-behaved PSO:Principles and applications[M]. Beijing:Tsinghua University Press, 2011:31-51(in Chinese).
[22] 周雨鹏. 基于鸽群算法的函数优化问题求解[D]. 长春:东北师范大学, 2016:6-23. ZHOU Y P. A pigeon-inspired algorithm for function optimization problems[D]. Changchun:Northeast Normal University, 2016:6-23(in Chinese).
[23] 郭瑞, 赵汝鑫, 吴海舟, 等. 具有收缩因子的自适应鸽群算法用于函数优化问题[J]. 物联网技术, 2017(5):91-94. GUO R, ZHAO R X, WU H Z, et al. Adaptive pigeon group algorithm with contraction factor for function optimization[J]. Internet of Things Technologies, 2017(5):91-94(in Chinese).