Electronics and Electrical Engineering and Control

Test and optimization of shield effectiveness for airborne electronic equipment

  • MA Zhenyang ,
  • ZUO Jing ,
  • SHI Chunlei ,
  • FENG Jiacheng ,
  • LIU Xuhong
Expand
  • 1. School of Airworthiness, Civil Aviation University of China, Tianjin 300300, China;
    2. Key Laboratory of Civil Aircraft Airworthiness Technology, Civil Aviation University of China, Tianjin 300300, China;
    3. Civil Aircraft Airworthiness and Repair Key Laboratory of Tianjin, Civil Aviation University of China, Tianjin 300300, China

Received date: 2019-10-08

  Revised date: 2019-12-05

  Online published: 2020-01-10

Supported by

Aeronautical Science Foundation of China (20182667009)

Abstract

With the development of aviation industry, High Intensity Radiation Field (HIRF) has more and more influence on airborne electronic equipment. Therefore, it is of great significance to test and optimize the shielding effectiveness of airborne electronic equipment. In this paper, the test environment of HIRF was established based on RTCA/DO-160G and GJB 5185-2003. The shielding effectiveness of airborne electronic equipment is tested under the electromagnetic environment, and the effects of different test positions and different incident surfaces on the shielding effectiveness were analyzed. The main coupling channel of airborne communication equipment is obtained. Finally, a general optimization method for different coupling channels is proposed. The results can provide references for the test of airborne electronic equipment HIRF and the optimization of shielding body.

Cite this article

MA Zhenyang , ZUO Jing , SHI Chunlei , FENG Jiacheng , LIU Xuhong . Test and optimization of shield effectiveness for airborne electronic equipment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(7) : 323538 -323538 . DOI: 10.7527/S1000-6893.2020.23538

References

[1] RASEK G A, SCHRODER A, TOBOLA P, et al. HIRF transfer function observations:Notes on results versus requirements and certification approach[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(2):195-202.
[2] 李婵虓, 余占清, 曾嵘, 等. 冲击电场作用下屏蔽体屏蔽效能实验研究[J]. 高电压技术, 2014, 40(9):2849-2854. LI C X, YU Z Q, ZENG R, et al. Experimental study on shielding effectiveness of shielded body under impulse electric field[J]. High Voltage Technology, 2014, 40(9):2849-2854(in Chinese).
[3] 魏嘉利, 贾云峰, 谢树果, 等. 航空电子系统电磁环境复杂度量化评估方法[J].航空学报, 2014, 35(2):487-496. WEI J L, JIA Y F, XIE S G, et al. Evaluation method for complex measurement of electromagnetic environment in avionics[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):487-496(in Chinese).
[4] SAE International. Guide to certification of aircraft in a high intensity radiated field (HIRF) environment:SAE ARP 5583A[S]. Washington D.C.:SAE International, 2003.
[5] 石丹. 平面波斜入射到有孔腔体的屏蔽效能分析[J].电波科学学报, 2011, 26(4):678-682. SHI D. Analysis of shielding effectiveness of plane wave oblique incident on porous cavity[J]. Journal of Radio Science, 2011, 26(4):678-682(in Chinese).
[6] ROBINSON M P, BENSON T M, CHRISTOPOULOS C, et al. Effect of logic family on radiated emissions from digital circuits[J]. IEEE Transactions on Electromagnetic Compatibility, 1998, 40(3):288-293.
[7] 张亚普, 达新宇, 谢铁城. 混合孔缝箱体屏蔽效能电磁拓扑分析方法[J]. 高电压技术, 2014, 40(9):2833-2841. ZHANG Y P, DA X Y, XIE T C. Method of electromagnetic topology analysis for shielding efficiency of mixed hole slot box[J]. High Voltage Technology, 2014, 40(9):2833-2841(in Chinese).
[8] 阚勇, 闫丽萍, 赵翔, 等. 基于电磁拓扑的多腔体屏蔽效能快速算法[J]. 物理学报, 2016, 65(3):88-99. KAN Y, YAN L P, ZHAO X, et al. A fast algorithm for multi-cavity shielding effectiveness based on electromagnetic topology[J]. Journal of Physics, 2016, 65(3):88-99(in Chinese).
[9] 汪柳平, 高攸纲, 沈远茂, 等. 装有PCB有孔矩形腔屏蔽效能的传输线法分析[J]. 电波科学学报, 2008, 23(4):740-744. WANG L P, GAO Y G, SHEN Y M, et al. Transmission line analysis of shielding effectiveness of rectangular cavity with PCB[J]. Journal of Radio Science, 2008, 23(4):740-744(in Chinese).
[10] 郝建红, 公延飞, 蒋璐行, 等. 内置电路板的复杂多腔体电磁串扰屏蔽效能的解析研究[J]. 电工技术学报, 2018, 33(3):670-679. HAO J H, GONG Y F, JIANG L X, et al. Analytical study on shielding effectiveness of complex multi-cavity electromagnetic crosstalk on built-in circuit board[J]. Journal of Electrotechnical Technology, 2018, 33(3):670-679(in Chinese).
[11] 罗静雯, 杜平安, 任丹. 一种基于BLT方程的孔缝箱体屏蔽效能计算方法[J]. 物理学报, 2014, 64(1):62-69. LUO J W, DU P A, REN D. A method for calculating the shielding efficiency of hole slot box based on BLT equation[J]. Journal of Physics, 2014, 64(1):62-69(in Chinese).
[12] 李新峰, 魏光辉, 汪连栋. 含短贯通导体的金属腔体电磁辐射耦合规律[J]. 高电压技术, 2016, 42(3):987-993. LI X F, WEI G H, WANG L D. The law of electromagnetic radiation coupling of metal cavity containing short through conductor[J]. High Voltage Technology, 2016, 42(3):987-993(in Chinese).
[13] 何鸣, 刘光斌, 胡延安, 等. 孔缝对导弹电子设备机箱电磁屏蔽效能的影响[J]. 宇航学报, 2006(2):262-267. HE M, LIU G B, HU Y A, et al. The effect of the hole seam on the electromagnetic shielding effectiveness of the case of the missile electronic equipment[J]. Journal of Astronautics, 2006(2):262-267(in Chinese).
[14] GAO Y H, GU J J, YANG K Y, et al. Analysis on the shielding effectiveness of metallic box with apertures based on FDTD[J]. Applied Mechanics and Materials, 2013, 21(10):239-240.
[15] 魏光辉, 李凯, 潘晓东, 等. 含孔缝金属腔体电磁场增强效应的形成机理仿真[J]. 高电压技术, 2014, 40(6):1637-1643. WEI G H, LI K, PAN X D, et al. Simulation of formation mechanism of electromagnetic field enhancement effect of metal cavity with slit[J]. High Voltage Technology, 2014, 40(6):1637-1643(in Chinese).
[16] 彭强, 周东方, 侯德亭, 等. 带缝隙矩形腔的屏蔽效能传输线法修正及扩展分析[J]. 强激光与粒子束, 2013, 25(9):2355-2362. PENG Q, ZHOU D F, HOU D T, et al. Modification and extension analysis of transmission line method for shielding effectiveness of rectangular cavity with slot[J]. Intense Laser and Particle Beam, 2013, 25(9):2355-2362(in Chinese).
[17] 吉奉公. 小型机箱屏蔽效能测试技术研究[D]. 南京:东南大学, 2016. JI F G. Research on shielding effectiveness of small-sized chassis[D]. Nanjing:Southeast University, 2016(in Chinese).
[18] HOLLOWAY C L, LADBURRY J, CODER J, et al. Measuring the shielding effectiveness of small enclosures/cavities with a reverberation chamber[C]//IEEE International Symposium on Electromagnetic Compatibility. Piscataway:IEEE Press, 2007:1-5.
[19] SANDRA G, MARIA S. Hybrid mode-stirring technique for shielding effectiveness measurement of enclosures using reverberation chambers[C]//IEEE International Symposium on Electromagnetic Compatibility. Piscataway:IEEE Press, 2007:2266-2271.
[20] MARVIN A C, DAWSON J F. Shielding effectiveness estimation of physically small electrically large enclosures through dimensional scaling[C]//International Symposium on Electromagnetic Compatibility. Piscataway:IEEE Press, 2012:652-656.
[21] 刘逸飞, 陈永光, 贾锐. 混响室条件下小尺寸腔体屏蔽效能测试[J]. 北京理工大学学报, 2015, 35(11):1158-1163. LIU Y F, CHEN Y G, JIA R. Test of shielding effectiveness of small size cavity under reverberation chamber condition[J]. Journal of Beijing Institute of Technology, 2015, 35(11):1158-1163(in Chinese).
[22] 崔杨. 矩形金属腔体屏蔽效能分析[D]. 西安:西安电子科技大学, 2011. CUI Y. Analysis of shielding effectiveness of rectangular metal cavity[D]. Xi'an:Xidian University, 2011(in Chinese).
[23] RTCA Inc. Environmental conditions and test procedures for airborne equipment:RTCA/DO-160G[S]. Washington D.C.:RTCA Inc, 2010.
[24] 国防科学技术工业委员会.小屏蔽体屏蔽效能测量方法:GJB 5185-2003[S]. 北京:国防科工委军标出版社,2003. COSTIND. Methods for shielding effectiveness of small-sized shielding enclosures:GJB 5185-2003[S]. Beijing:National Defense Military Standard Press, 2003.
[25] 阎芳, 刘旭红, 王鹏, 等. 高强辐射场下不同孔阵的金属腔体屏蔽效能研究[J]. 电光与控制, 2019, 26(8):90-94. YAN F, LIU X H, WANG P, et al. Study on shielding effectiveness of metal cavities with different hole arrays in high strength radiation field[J]. Electronics Optics & Control, 2019, 26(8):90-94(in Chinese).
[26] 任丹, 杜平安, 聂宝林, 等. 一种考虑小孔尺寸效应的孔阵等效建模方法[J]. 物理学报, 2014, 63(12):121-128. REN D, DU P A, NIE B L, et al. An equivalent modeling method of hole array considering the effect of small hole size[J]. Journal of Physics, 2014, 63(12):121-128(in Chinese).
Outlines

/