[1] HERBST W B. Dynamic of air combat[J]. Journal of Aircraft, 1983, 20(7):594-598.
[2] WILLIAMS B Y, LANDMAN D, FLORY I L, et al. The effect of systematic error in forced oscillation testing:AIAA-2012-0768[R]. Reston:AIAA, 2012.
[3] CHDOY J H. Combat aircraft control requirements for agility:AGARD CP-465[R]. Neuilly Sur Seine:AGARD, 1989.
[4] 史忠科. 高性能飞机发展对控制理论的挑战[J]. 航空学报, 2015, 36(8):2717-2734. SHI Z K. Challenge of control theory in the presence of high performance aircraft development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2717-2734(in Chinese).
[5] GREENWELL D I. A review of unsteady aerodynamic modelling for flight dynamics of maneuverable aircraft:AIAA-2004-5276[R]. Reston:AIAA, 2004.
[6] 汪清, 钱炜祺, 丁娣. 飞机大迎角非定常气动力建模研究进展[J]. 航空学报, 2016, 37(8):2331-2347. WANG Q, QIAN W Q, DING D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2331-2347(in Chinese).
[7] TOBAK M, SCHIFF L B. On the formulation of the aerodynamics in aircraft dynamics:NASA-TR-456[R]. Washington, D.C.:NASA, 1976.
[8] TOBAK M, CHAPMAN G T, SCHIFF L B. Mathematical modeling of the aerodynamic characteristics in flight dynamics:NASA-TM-85880[R]. Washington, D.C.:NASA, 1984.
[9] GUPTA N, ILIFF K. Identification of integro-differential systems for application to unsteady aerodynamics and aeroelasticity:AIAA-1985-1763[R]. Reston:AIAA, 1985.
[10] SINGH R, BAEDER J. Direct calculation of three-dimensional indicial lift response using computational fluid dynamics[J]. Journal of Aircraft, 1997, 34(4):465-471.
[11] GHOREYSHI M, CUMMINGS R M, RONCH A D, et al. Transonic aerodynamic load modeling of X-31 aircraft pitching motions[J]. AIAA Journal, 2013, 51(10):2447-2464.
[12] CHIN S, LAN C E. Fourier functional analysis for unsteady aerodynamic modeling[J]. AIAA Journal, 1992, 30(9):2259-2266.
[13] 姜裕标, 沈礼敏. 飞行器非定常气动力试验与建模研究[J]. 实验流体力学, 2000, 14(4):26-31. JIANG Y B, SHEN L M. An experimental investigation on unsteady aerodynamics and modeling for a fighter configuration[J]. Journal of Experiments in Fluid Mechanics, 2000, 14(4):26-31(in Chinese).
[14] 孙海生, 张海酉, 刘志涛. 大迎角非定常气动力建模方法研究[J]. 空气动力学学报, 2011, 29(6):733-737. SUN H S, ZHANG H Y, LIU Z T. Comparative evaluation of unsteady aerodynamics modeling approaches at high angle of attack[J]. Acta Aerodynamica Sinica, 2011, 29(6):733-737(in Chinese).
[15] GOMAN M, KHRAHRO V. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[J]. Journal of Aircraft, 1994, 31(5):1109-1115.
[16] FAN Y G, LUTZE F H. Identification of an unsteady aerodynamic model at high angles of attack:AIAA-1996-3407[R]. Reston:AIAA, 1996.
[17] 高正红, 焦天峰. 飞行器快速俯仰产生大迎角非定常气动力数学模型研究[J]. 西北工业大学学报, 2001, 19(4):506-510. GAO Z H, JIAO T F. On an unsteady model for pitching-oscillating body at high angle of attack[J]. Journal of Northwestern Polytechnical University, 2001, 19(4):506-510(in Chinese).
[18] ABRAMOV N B, GOMAN M G, KHRABROV A N, et al. Simple wings unsteady aerodynamics at high angles of attack:experimental and modeling results:AIAA-1999-4013[R]. Reston:AIAA, 1999.
[19] ABRAMOV N B, GOMAN M G, GREENWELL D I, et al. Two-step linear regression method for identification of high incidence unsteady aerodynamic model:AIAA-2001-4080[R]. Reston:AIAA, 2001.
[20] 汪清, 蔡金狮. 飞机大攻角非定常气动力建模与辨识[J]. 航空学报, 1996, 17(4):391-398. WANG Q, CAI J S. Unsteady aerodynamic modeling and identification of airplane at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(4):391-398(in Chinese).
[21] 汪清, 何开锋, 钱炜祺, 等. 飞机大攻角空间机动气动力建模研究[J]. 航空学报, 2004, 25(5):447-450. WANG Q, HE K F, QIAN W Q, et al. Aerodynamic modeling of spatial maneuvering aircraft at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(5):447-450(in Chinese).
[22] WANG Z J, LAN C E, BRANDON J M. Fuzzy logic modeling of nonlinear unsteady aerodynamics:AIAA-1998-4351[R]. Reston:AIAA, 1998.
[23] 史志伟, 吴根兴. 多变量非线性非定常气动力的模糊逻辑模型[J]. 空气动力学学报, 2001, 19(1):103-108. SHI Z W, WU G X. Fuzzy logic model of nonlinear unsteady aerodynamics with multiple variables[J]. Acta Aerodynamica Sinica, 2001, 19(1):103-108(in Chinese).
[24] 刘志涛, 孙海生, 姜裕标, 等. 非线性非定常气动力的模糊逻辑建模方法[J]. 实验流体力学, 2005, 19(1):99-103. LIU Z T, SUN H S, JIANG Y B, et al. Fuzzy logic modeling of nonlinear unsteady aerodynamics[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1):99-103(in Chinese).
[25] ROKHSAZ K, STECK J E. Use of neural network in control of high-alpha maneuvers[J]. Journal of Guidance, Control and Dynamics, 1993, 16(5):934-939.
[26] WANG Q, HE K F, QIAN W Q, et al. Unsteady aerodynamics modeling for flight dynamics application[J]. Acta Mechanica Sinica, 2012, 25(3):361-371.
[27] 付军泉, 史志伟, 陈坤, 等. 基于EKF的实时循环神经网络在非定常气动力建模中的应用[J]. 空气动力学学报, 2018, 34(4):658-663. FU J Q, SHI Z W, CHEN K, et al. Applications of real-time recurrent neural network based on extended Kalman filter in unsteady aerodynamics modeling[J]. Acta Aerodynamica Sinica, 2018, 34(4):658-663(in Chinese).
[28] CHEN Y L. Modeling of longitudinal unsteady aerodynamics at high angle-of-attack based on support vector machines[C]//Proceedings of 8th International Conference on Natural Computation. New York:IEEE, 2012:431-435.
[29] WANG Q, QIAN W Q, HE K F. Unsteady aerodynamic modeling at high angles of attack using support vector machines[J]. Chinese Journal of Aeronautics, 2015, 28(3):659-668.
[30] ABRAMOV N, GOMAN M, KHRAHROV A. Aircraft dynamics at high incidence flight with account of unsteady aerodynamic effects:AIAA-2004-5274[R]. Reston:AIAA, 2004.
[31] 龚正. 先进飞行器非定常气动力建模, 控制律设计及验证方法研究[D]. 南京:南京航空航天大学, 2011:47-55. GONG Z. Research on unsteady aerodynamic modeling, control law design and clearance for advanced aerospace vehicle[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011:47-55(in Chinese).
[32] ABRAMOV N, GOMAN M, DEMENKOV M, et al. Lateral-directional aircraft dynamics at high incidence flight with account of unsteady aerodynamic effects:AIAA-2005-6331[R]. Reston:AIAA, 2005.
[33] 黄达, 郑万祥. 基于风洞试验的非定常气动力微分方程建模方法[J]. 南京航空航天大学学报, 2014, 46(4):599-602. HUANG D, ZHENG W X. Unsteady aerodynamic modeling method using differential equations based on wind tunnel test[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(4):599-602(in Chinese).
[34] SHEN L, HUANG D, WU G X. Experimental investigation of yawing rolling coupling effects on unsteady aerodynamic characteristics of an aircraft[J]. Modern Physics Letters B, 2018, 32(12-13):1840033.
[35] 卜忱, 杜希奇, 黄丽婧, 等. 旋转流场下飞机大幅滚转振荡时的动态横向气动特性试验研究[J]. 实验流体力学, 2008, 22(1):46-54. BU C, DU X Q, HUANG L J, et al. Investigation of unsteady aerodynamic characteristics for the large amplitude rolling under rotary flow field[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(1):46-54(in Chinese).
[36] FAN Y, LUZTE F H. Multiaxis unsteady aerodynamic characteristics for an aircraft:AIAA-1999-4011[R]. Reston:AIAA, 1999.
[37] 孙海生. 飞行器大攻角升沉平移加速度导数测量技术[J]. 流体力学实验与测量, 2001, 15(4):15-19. SUN H S. A measurement technique for derivatives of aircraft due to acceleration in heave and sideslip at high angle of attack[J]. Experiments and Measurements in Fluid Mechanics, 2019, 15(4):15-19(in Chinese).
[38] LOSER T, BERGMANN A. Development of the dynamic wind tunnel testing capabilities at DNW-NWB:AIAA-2003-0453[R]. Reston:AIAA, 2003.
[39] SHWEYK K M, HAYES P J. Characterization of stability and control derivatives through water-tunnel testing:AIAA-2018-2995[R]. Reston:AIAA, 2018.
[40] 刘旭, 刘伟, 柴振霞, 等. 飞行器动态稳定性参数计算方法研究进展[J]. 航空学报, 2016, 37(8):2348-2369. LIU X, LIU W, CHAI Z X, et al. Research progress of numerical method of dynamic stability derivatives of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2348-2369(in Chinese).
[41] MULKENS M J, ORMEROD A O. Measurement of aerodynamic rotary stability derivatives using a whirling arm facility[J]. Journal of Aircraft, 1993, 30(2):178-183.
[42] 卜忱, 杜希奇, 王学俭. 飞行器纵向阻尼动导数直接测量试验研究[J]. 实验流体力学, 2005, 19(1):21-34. BU C, DU X Q, WANG X J. Investigation of longitudinal damping derivative of aircraft by direct measurement tests[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1):21-34(in Chinese).
[43] BEYERS M E. Interpretation of experimental high-alpha aerodynamics-Implications for flight prediction:AIAA-1994-0166[R]. Reston:AIAA, 1994.
[44] BRANDON J M, FOSTER J V. Recent dynamic measurements and considerations for aerodynamic modeling of fighter airplane configurations:AIAA-1998-4447[R]. Reston:AIAA, 1998.
[45] 黄达, 李志强, 吴根兴. 大振幅非定常试验数学模型与动导数仿真试验[J]. 空气动力学学报, 1999, 17(2):219-223. HUANG D, LI Z Q, WU G X. Dynamic derivative simulation and mathematical model of the wind tunnel test about a model pitching in very large amplitude[J]. Acta Aerodynamica Sinica, 1999, 17(2):219-223(in Chinese).
[46] VICROY D D, LOESER T D, SCHUTTE A. Static and forced-oscillation tests of a generic unmanned combat air vehicle[J]. Journal of Aircraft, 2012, 49(6):1558-1583.
[47] ROHLF D, SCHMIDT S, IRVING J. Stability and control analysis of an unmanned aircraft configuration using system-identification techniques[J]. Journal of Aircraft, 2012, 49(6):1597-1609.
[48] GREENWELL D I. Frequency effects on dynamic stability derivatives obtained from small-amplitude oscillatory testing[J]. Journal of Aircraft, 1998, 35(5):776-783.
[49] BRANDON J M, FOSTER J V. Recent dynamic measurements and considerations for aerodynamic modeling of fighter airplane configurations:AIAA-1998-4447[R]. Reston:AIAA, 1998.
[50] HUANG D, WU G X. Unsteady rolling moment characteristics for fighter oscillation with yawing-rolling coupled motion[J]. Journal of Aircraft, 2006, 43(5):1570-1573.
[51] WANG Z J, LAN E C, BRANDON J M. Unsteady aerodynamic effects on the flight characteristics of an F-16XL configuration:AIAA-2000-3910[R]. Reston:AIAA, 2000.
[52] BERGMANN A, HUEBNER A, LOESER T. Experimental and numerical research on the aerodynamics of unsteady moving aircraft[J]. Progress in Aerospace Science, 2008, 44(2):121-137.
[53] LOESER T, ROHLF D. Experimental determination of dynamic derivatives in a wind tunnel using parameter identification[C]//Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2016:651-662.
[54] SHEN L, HUANG D, WU G X. Effects of yaw-roll coupling ratio on the lateral-directional aerodynamic characteristics[J]. Chinese Journal of Aeronautics, 2019, 32(2):272-280.
[55] ORLIK-RUCKEMANN K J. Aerodynamic aspects of aircraft dynamics at high angles of attack[J]. Journal of Aircraft, 1983, 20(9):737-752.
[56] BUSHGENS G S. 超声速飞机空气动力学和飞行力学[M]. 郭桢, 译. 上海:上海交通大学出版社, 2009:543. BUSHGENS G S. Aerodynamics, stability and controllability of supersonic aircraft[M]. GUO Z, translated. Shanghai:Shanghai Jiao Tong University Press, 2009:543(in Chinese).
[57] 刘英. 飞机失控特性和尾旋特性的试验研究[D]. 南京:南京航空航天大学, 2007:56-58. LIU Y. Experimental investigation on uncontrolled and spin characteristics of aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007:56-58(in Chinese).
[58] SHEN L, HUANG D, WU G X. An investigation of lateral-directional departure behavior based on yawing-rolling coupled wind tunnel tests[J]. Proceedings of the In-stitution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 232(16):2989-3000.
[59] SHEN L, HUANG D, WU G X. Effects of yaw-roll coupling ratio on the lateral-directional departure prediction and restraint[J]. Chinese Journal of Aeronautics, 2019, 32(10):2239-2253.