Fluid Mechanics and Flight Mechanics

Unsteady aerodynamic modeling for fighter configuration at high angles of attack

  • SHEN Lin ,
  • HUANG Da ,
  • WU Genxing ,
  • ZHAN Jingxia
Expand
  • 1. Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. AVIC Chengdu Aircraft Design and Research Institute, Chengdu 610091, China

Received date: 2019-09-03

  Revised date: 2019-09-21

  Online published: 2019-09-30

Supported by

National Natural Science Foundation of China (11872209); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

Abstract

The current studies of unsteady aerodynamic modeling at high angles of attack were mostly based on the wind tunnel tests with single degree of freedom oscillations, and are hard to be applied to the engineering applications such as stability analysis and control law design. In this investigation, an unsteady aerodynamic model called ???20200612??? model is proposed based on the yaw-roll coupled experimental data at high angles of attack. In the ???20200612??? model, the unsteady aerodynamic loads are considered as combinations of which produced by the module of rotation vector and variation of attitude (???20200612???). Therefore, the ???20200612??? model had a clear physical significance, and is simple in expression. Furthermore, the effects of lateral-directional coupling on the unsteady aerodynamic loads are accurately reflected in ???20200612??? model. Then both the ???20200612??? model and quasi-steady model, which is commonly used in engineering applications, are used for the calculation of lateral-directional aerodynamic loads in different motions and simulations of spin. The comparison between the simulation results and experimental data of spin verified that the ???20200612??? model is accurate in the prediction of unsteady aerodynamic characteristics of an aircraft at high angles of attack. Then ???20200612??? model are locally linearized by decomposing the modeling parameters onto body-axis, thus it could be compatible with current method of flight dynamics analysis. Hence the engineering applicability of ???20200612??? model is further verified by the theoretical explanation and simulation of the lateral disturbance phenomenon appeared in the flight test of F-16XL.

Cite this article

SHEN Lin , HUANG Da , WU Genxing , ZHAN Jingxia . Unsteady aerodynamic modeling for fighter configuration at high angles of attack[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(6) : 523440 -523440 . DOI: 10.7527/S1000-6893.2019.23440

References

[1] HERBST W B. Dynamic of air combat[J]. Journal of Aircraft, 1983, 20(7):594-598.
[2] WILLIAMS B Y, LANDMAN D, FLORY I L, et al. The effect of systematic error in forced oscillation testing:AIAA-2012-0768[R]. Reston:AIAA, 2012.
[3] CHDOY J H. Combat aircraft control requirements for agility:AGARD CP-465[R]. Neuilly Sur Seine:AGARD, 1989.
[4] 史忠科. 高性能飞机发展对控制理论的挑战[J]. 航空学报, 2015, 36(8):2717-2734. SHI Z K. Challenge of control theory in the presence of high performance aircraft development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2717-2734(in Chinese).
[5] GREENWELL D I. A review of unsteady aerodynamic modelling for flight dynamics of maneuverable aircraft:AIAA-2004-5276[R]. Reston:AIAA, 2004.
[6] 汪清, 钱炜祺, 丁娣. 飞机大迎角非定常气动力建模研究进展[J]. 航空学报, 2016, 37(8):2331-2347. WANG Q, QIAN W Q, DING D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2331-2347(in Chinese).
[7] TOBAK M, SCHIFF L B. On the formulation of the aerodynamics in aircraft dynamics:NASA-TR-456[R]. Washington, D.C.:NASA, 1976.
[8] TOBAK M, CHAPMAN G T, SCHIFF L B. Mathematical modeling of the aerodynamic characteristics in flight dynamics:NASA-TM-85880[R]. Washington, D.C.:NASA, 1984.
[9] GUPTA N, ILIFF K. Identification of integro-differential systems for application to unsteady aerodynamics and aeroelasticity:AIAA-1985-1763[R]. Reston:AIAA, 1985.
[10] SINGH R, BAEDER J. Direct calculation of three-dimensional indicial lift response using computational fluid dynamics[J]. Journal of Aircraft, 1997, 34(4):465-471.
[11] GHOREYSHI M, CUMMINGS R M, RONCH A D, et al. Transonic aerodynamic load modeling of X-31 aircraft pitching motions[J]. AIAA Journal, 2013, 51(10):2447-2464.
[12] CHIN S, LAN C E. Fourier functional analysis for unsteady aerodynamic modeling[J]. AIAA Journal, 1992, 30(9):2259-2266.
[13] 姜裕标, 沈礼敏. 飞行器非定常气动力试验与建模研究[J]. 实验流体力学, 2000, 14(4):26-31. JIANG Y B, SHEN L M. An experimental investigation on unsteady aerodynamics and modeling for a fighter configuration[J]. Journal of Experiments in Fluid Mechanics, 2000, 14(4):26-31(in Chinese).
[14] 孙海生, 张海酉, 刘志涛. 大迎角非定常气动力建模方法研究[J]. 空气动力学学报, 2011, 29(6):733-737. SUN H S, ZHANG H Y, LIU Z T. Comparative evaluation of unsteady aerodynamics modeling approaches at high angle of attack[J]. Acta Aerodynamica Sinica, 2011, 29(6):733-737(in Chinese).
[15] GOMAN M, KHRAHRO V. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[J]. Journal of Aircraft, 1994, 31(5):1109-1115.
[16] FAN Y G, LUTZE F H. Identification of an unsteady aerodynamic model at high angles of attack:AIAA-1996-3407[R]. Reston:AIAA, 1996.
[17] 高正红, 焦天峰. 飞行器快速俯仰产生大迎角非定常气动力数学模型研究[J]. 西北工业大学学报, 2001, 19(4):506-510. GAO Z H, JIAO T F. On an unsteady model for pitching-oscillating body at high angle of attack[J]. Journal of Northwestern Polytechnical University, 2001, 19(4):506-510(in Chinese).
[18] ABRAMOV N B, GOMAN M G, KHRABROV A N, et al. Simple wings unsteady aerodynamics at high angles of attack:experimental and modeling results:AIAA-1999-4013[R]. Reston:AIAA, 1999.
[19] ABRAMOV N B, GOMAN M G, GREENWELL D I, et al. Two-step linear regression method for identification of high incidence unsteady aerodynamic model:AIAA-2001-4080[R]. Reston:AIAA, 2001.
[20] 汪清, 蔡金狮. 飞机大攻角非定常气动力建模与辨识[J]. 航空学报, 1996, 17(4):391-398. WANG Q, CAI J S. Unsteady aerodynamic modeling and identification of airplane at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(4):391-398(in Chinese).
[21] 汪清, 何开锋, 钱炜祺, 等. 飞机大攻角空间机动气动力建模研究[J]. 航空学报, 2004, 25(5):447-450. WANG Q, HE K F, QIAN W Q, et al. Aerodynamic modeling of spatial maneuvering aircraft at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(5):447-450(in Chinese).
[22] WANG Z J, LAN C E, BRANDON J M. Fuzzy logic modeling of nonlinear unsteady aerodynamics:AIAA-1998-4351[R]. Reston:AIAA, 1998.
[23] 史志伟, 吴根兴. 多变量非线性非定常气动力的模糊逻辑模型[J]. 空气动力学学报, 2001, 19(1):103-108. SHI Z W, WU G X. Fuzzy logic model of nonlinear unsteady aerodynamics with multiple variables[J]. Acta Aerodynamica Sinica, 2001, 19(1):103-108(in Chinese).
[24] 刘志涛, 孙海生, 姜裕标, 等. 非线性非定常气动力的模糊逻辑建模方法[J]. 实验流体力学, 2005, 19(1):99-103. LIU Z T, SUN H S, JIANG Y B, et al. Fuzzy logic modeling of nonlinear unsteady aerodynamics[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1):99-103(in Chinese).
[25] ROKHSAZ K, STECK J E. Use of neural network in control of high-alpha maneuvers[J]. Journal of Guidance, Control and Dynamics, 1993, 16(5):934-939.
[26] WANG Q, HE K F, QIAN W Q, et al. Unsteady aerodynamics modeling for flight dynamics application[J]. Acta Mechanica Sinica, 2012, 25(3):361-371.
[27] 付军泉, 史志伟, 陈坤, 等. 基于EKF的实时循环神经网络在非定常气动力建模中的应用[J]. 空气动力学学报, 2018, 34(4):658-663. FU J Q, SHI Z W, CHEN K, et al. Applications of real-time recurrent neural network based on extended Kalman filter in unsteady aerodynamics modeling[J]. Acta Aerodynamica Sinica, 2018, 34(4):658-663(in Chinese).
[28] CHEN Y L. Modeling of longitudinal unsteady aerodynamics at high angle-of-attack based on support vector machines[C]//Proceedings of 8th International Conference on Natural Computation. New York:IEEE, 2012:431-435.
[29] WANG Q, QIAN W Q, HE K F. Unsteady aerodynamic modeling at high angles of attack using support vector machines[J]. Chinese Journal of Aeronautics, 2015, 28(3):659-668.
[30] ABRAMOV N, GOMAN M, KHRAHROV A. Aircraft dynamics at high incidence flight with account of unsteady aerodynamic effects:AIAA-2004-5274[R]. Reston:AIAA, 2004.
[31] 龚正. 先进飞行器非定常气动力建模, 控制律设计及验证方法研究[D]. 南京:南京航空航天大学, 2011:47-55. GONG Z. Research on unsteady aerodynamic modeling, control law design and clearance for advanced aerospace vehicle[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011:47-55(in Chinese).
[32] ABRAMOV N, GOMAN M, DEMENKOV M, et al. Lateral-directional aircraft dynamics at high incidence flight with account of unsteady aerodynamic effects:AIAA-2005-6331[R]. Reston:AIAA, 2005.
[33] 黄达, 郑万祥. 基于风洞试验的非定常气动力微分方程建模方法[J]. 南京航空航天大学学报, 2014, 46(4):599-602. HUANG D, ZHENG W X. Unsteady aerodynamic modeling method using differential equations based on wind tunnel test[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(4):599-602(in Chinese).
[34] SHEN L, HUANG D, WU G X. Experimental investigation of yawing rolling coupling effects on unsteady aerodynamic characteristics of an aircraft[J]. Modern Physics Letters B, 2018, 32(12-13):1840033.
[35] 卜忱, 杜希奇, 黄丽婧, 等. 旋转流场下飞机大幅滚转振荡时的动态横向气动特性试验研究[J]. 实验流体力学, 2008, 22(1):46-54. BU C, DU X Q, HUANG L J, et al. Investigation of unsteady aerodynamic characteristics for the large amplitude rolling under rotary flow field[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(1):46-54(in Chinese).
[36] FAN Y, LUZTE F H. Multiaxis unsteady aerodynamic characteristics for an aircraft:AIAA-1999-4011[R]. Reston:AIAA, 1999.
[37] 孙海生. 飞行器大攻角升沉平移加速度导数测量技术[J]. 流体力学实验与测量, 2001, 15(4):15-19. SUN H S. A measurement technique for derivatives of aircraft due to acceleration in heave and sideslip at high angle of attack[J]. Experiments and Measurements in Fluid Mechanics, 2019, 15(4):15-19(in Chinese).
[38] LOSER T, BERGMANN A. Development of the dynamic wind tunnel testing capabilities at DNW-NWB:AIAA-2003-0453[R]. Reston:AIAA, 2003.
[39] SHWEYK K M, HAYES P J. Characterization of stability and control derivatives through water-tunnel testing:AIAA-2018-2995[R]. Reston:AIAA, 2018.
[40] 刘旭, 刘伟, 柴振霞, 等. 飞行器动态稳定性参数计算方法研究进展[J]. 航空学报, 2016, 37(8):2348-2369. LIU X, LIU W, CHAI Z X, et al. Research progress of numerical method of dynamic stability derivatives of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2348-2369(in Chinese).
[41] MULKENS M J, ORMEROD A O. Measurement of aerodynamic rotary stability derivatives using a whirling arm facility[J]. Journal of Aircraft, 1993, 30(2):178-183.
[42] 卜忱, 杜希奇, 王学俭. 飞行器纵向阻尼动导数直接测量试验研究[J]. 实验流体力学, 2005, 19(1):21-34. BU C, DU X Q, WANG X J. Investigation of longitudinal damping derivative of aircraft by direct measurement tests[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1):21-34(in Chinese).
[43] BEYERS M E. Interpretation of experimental high-alpha aerodynamics-Implications for flight prediction:AIAA-1994-0166[R]. Reston:AIAA, 1994.
[44] BRANDON J M, FOSTER J V. Recent dynamic measurements and considerations for aerodynamic modeling of fighter airplane configurations:AIAA-1998-4447[R]. Reston:AIAA, 1998.
[45] 黄达, 李志强, 吴根兴. 大振幅非定常试验数学模型与动导数仿真试验[J]. 空气动力学学报, 1999, 17(2):219-223. HUANG D, LI Z Q, WU G X. Dynamic derivative simulation and mathematical model of the wind tunnel test about a model pitching in very large amplitude[J]. Acta Aerodynamica Sinica, 1999, 17(2):219-223(in Chinese).
[46] VICROY D D, LOESER T D, SCHUTTE A. Static and forced-oscillation tests of a generic unmanned combat air vehicle[J]. Journal of Aircraft, 2012, 49(6):1558-1583.
[47] ROHLF D, SCHMIDT S, IRVING J. Stability and control analysis of an unmanned aircraft configuration using system-identification techniques[J]. Journal of Aircraft, 2012, 49(6):1597-1609.
[48] GREENWELL D I. Frequency effects on dynamic stability derivatives obtained from small-amplitude oscillatory testing[J]. Journal of Aircraft, 1998, 35(5):776-783.
[49] BRANDON J M, FOSTER J V. Recent dynamic measurements and considerations for aerodynamic modeling of fighter airplane configurations:AIAA-1998-4447[R]. Reston:AIAA, 1998.
[50] HUANG D, WU G X. Unsteady rolling moment characteristics for fighter oscillation with yawing-rolling coupled motion[J]. Journal of Aircraft, 2006, 43(5):1570-1573.
[51] WANG Z J, LAN E C, BRANDON J M. Unsteady aerodynamic effects on the flight characteristics of an F-16XL configuration:AIAA-2000-3910[R]. Reston:AIAA, 2000.
[52] BERGMANN A, HUEBNER A, LOESER T. Experimental and numerical research on the aerodynamics of unsteady moving aircraft[J]. Progress in Aerospace Science, 2008, 44(2):121-137.
[53] LOESER T, ROHLF D. Experimental determination of dynamic derivatives in a wind tunnel using parameter identification[C]//Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2016:651-662.
[54] SHEN L, HUANG D, WU G X. Effects of yaw-roll coupling ratio on the lateral-directional aerodynamic characteristics[J]. Chinese Journal of Aeronautics, 2019, 32(2):272-280.
[55] ORLIK-RUCKEMANN K J. Aerodynamic aspects of aircraft dynamics at high angles of attack[J]. Journal of Aircraft, 1983, 20(9):737-752.
[56] BUSHGENS G S. 超声速飞机空气动力学和飞行力学[M]. 郭桢, 译. 上海:上海交通大学出版社, 2009:543. BUSHGENS G S. Aerodynamics, stability and controllability of supersonic aircraft[M]. GUO Z, translated. Shanghai:Shanghai Jiao Tong University Press, 2009:543(in Chinese).
[57] 刘英. 飞机失控特性和尾旋特性的试验研究[D]. 南京:南京航空航天大学, 2007:56-58. LIU Y. Experimental investigation on uncontrolled and spin characteristics of aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007:56-58(in Chinese).
[58] SHEN L, HUANG D, WU G X. An investigation of lateral-directional departure behavior based on yawing-rolling coupled wind tunnel tests[J]. Proceedings of the In-stitution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 232(16):2989-3000.
[59] SHEN L, HUANG D, WU G X. Effects of yaw-roll coupling ratio on the lateral-directional departure prediction and restraint[J]. Chinese Journal of Aeronautics, 2019, 32(10):2239-2253.
Outlines

/