[1] FOUGÈRES A J, OSTROSI E. Intelligent agents for feature modelling in computer aided design[J]. Journal of Computational Design and Engineering, 2018, 5(1):19-40.
[2] 赵鹏, 盛步云. 基于切削体分解组合策略的工艺特征识别方法[J]. 华南理工大学学报(自然科学版), 2011, 39(8):30-35. ZHAO P, SHENG B Y. Recognition method of process feature based on delta-volume decomposition and combination strategy[J]. Journal of South China University of Technology (Natural Science Edition), 2011, 39(8):30-35(in Chinese).
[3] ZEHTABAN L, ROLLER D. Automated rule-based system for Opitz feature recognition and code generation from STEP[J]. Computer-Aided Design and Applications, 2016, 13(3):309-319.
[4] HAN J, REQUICHA A A. Integration of feature based design and feature recognition[J]. Computer-Aided Design, 1997, 29(5):393-403.
[5] WANG J X, LIU S Q. Hopfield neural network-based automatic recognition for 3-D features[C]//Proceedings of 1993 International Joint Conference on Neural Networks. 1993:2121-2124.
[6] 齐峰, 谭建荣, 张树有. 基于径向基函数神经网络的特征识别技术研究[J]. 计算机辅助设计与图形学学报, 2002, 14(6):562-565. QI F, TAN J R, ZHANG S Y. Feature recognition based on RBF neural networks[J]. Journal of Computer-Aided Design & Computer Graphics, 2002, 14(6):562-565(in Chinese).
[7] ROSENBLATT F. The perceptron:A probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6):386-408.
[8] SAMARASINGHE S. Neural networks for applied sciences and engineering[M]. New York:Taylor & Francis Group, 2006:206-207.
[9] CARPENTER G A, GROSSBERG S. A massively parallel architecture for a self-organizing neural pattern recognition machine[J]. Computer Vision Graphics & Image Processing, 1987, 37(1):54-115.
[10] CARPENTER G A, GROSSBERG S. ART2:self-organization of stable category recognition codes for analog input patterns[J]. Applied Optics, 1987, 26(23):4919-4930.
[11] LANKALAPALLI K, CHATTERJEE S, CHANG T C. Feature recognition using ART2:A self-organizing neural network[J]. Journal of Intelligent Manufacturing, 1997, 8(3):203-214.
[12] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2016:2818-2826.
[13] FARABET C, COUPRIE C, NAJMAN L, et al. Learning hierarchical features for scene labeling[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(8):1915-1929.
[14] HINTON G, DENG L, YU D, et al. Deep neural networks for acoustic modeling in speech recognition:the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6):82-97.
[15] LI J, WONG H C, LO S L, et al. Multiple object detection by a deformable part-based model and an R-CNN[J]. IEEE Signal Processing Letters, 2018, 25(2):288-292.
[16] COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011, 12(1):2493-2537.
[17] HUBEL D H, WIESEL T N. Receptive fields of single neurons in the cat's striate cortex[J]. The Journal of Physiology, 1959, 148(3):574-591.
[18] FUKUSHIMA K, MIYAKE S. Neocognitron:A new algorithm for pattern recognition tolerant of deformations and shifts in position[J]. Pattern Recognition, 1982, 15(6):455-469.
[19] LECUN Y, JACKEL L D, BOTTOU L, et al. Learning algorithms for classification:A comparison on handwritten digit recognition[C]//Proceedings of the International Conference on Artificial Neural Networks, 1995:53-60.
[20] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[C]//Proceedings of the IEEE, 1998:2278-2323.
[21] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554.
[22] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the International Conference on Neural Information Processing Systems, 2012:1097-1105.
[23] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of Computer Vision-ECCV 2014, 2014:818-833.
[24] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of International Conference on Learning Representations (ICLR), 2015:1-14.
[25] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2015:1-9.
[26] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778.
[27] GUO Y, LIU Y, OERLEMANS A, et al. Deep learning for visual understanding:A review[J]. Neurocomputing, 2016, 187(C):27-48.
[28] LIN M, CHEN Q, YAN S. Network in network[C]//Proceedings of the International Conference on Learning Representations, 2014:1-10.
[29] SERMANET P, CHINTALA S, LECUN Y. Convolutional neural networks applied to house numbers digit classification[C]//Proceedings of 21st International Conference on Pattern Recognition, 2012:3288-3291.
[30] YU D, WANG H, CHEN P, et al. Mixed pooling for convolutional neural networks[C]//Proceedings of International Conference on Rough Sets and Knowledge Technology, 2014:364-375.
[31] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of 14th International Conference on Artificial Intelligence and Statistics. Brookline, MA:Microtome Publishing, 2011:315-323.
[32] MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]//Proceedings of 30th International Conference on Machine Learning, 2013:1-6.
[33] HE K, ZHANG X, REN S, et al. Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[C]//Proceedings of IEEE International Conference on Computer Vision, 2016:1026-1034.
[34] LI W D, ONG S K, NEE A Y C. Recognition of overlapping machining features based on hybrid artificial intelligent techniques[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2000, 214(8):739-744.
[35] NEZIS K, VOSNIAKOS G. Recognizing 21/2D shape features using a neural network and heuristics[J]. Computer-Aided Design, 1997, 29(7):523-539.
[36] GUAN X S, MENG G W, YUAN X H. Machining feature recognition of part from STEP file based on ANN[C]//Proceedings of the International Conference on Computer, Mechatronics, Control and Electronic Engineering, 2010:54-57.
[37] PRABHAKAR S, HENDERSON M R. Automatic form-feature recognition using neural-network-based techniques on B-rep of solid models[J]. Computer-Aided Design, 1992, 24(7):381-393.
[38] 胡小平, 杨世锡, 谭建荣. 基于人工神经网络识别的特征自组织技术[J]. 计算机辅助设计与图形学学报, 1999, 11(4):335-339. HU X P, YANG S X, TAN J R. The method for feature self-organization based on feature recognition with neural network[J]. Journal of Computer Aided Design and Computer Graphics, 1999, 11(4):335-339(in Chinese).
[39] DING L, YUE Y. Novel ANN-based feature recognition incorporating design by features[J]. Computers in Industry, 2004, 55(2):197-222.
[40] BABIĆ B R, NEŠIĆ N, MILJKOVIĆ Z. Automatic feature recognition using artificial neural networks to integrate design and manufacturing:Review of automatic feature recognition systems[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2011, 25(3):289-304.
[41] HWANG J L, HENDERSON M R. Applying the perceptron to three dimensional feature recognition[J]. Journal of Design Manufacture, 1992, 2(4):187-198.
[42] ONWUBOLU G C. Manufacturing features recognition using backpropagation neural networks[J]. Journal of Intelligent Manufacturing, 1999, 10(3-4):289-299.
[43] ONWUBOLU G C. Design of parts for cellular manufacturing using neural network-based approach[J]. Journal of Intelligent Manufacturing, 1999, 10(3-4):251-265.
[44] HAO Y T, CHI Y M. Research on ANN-based feature recognition and manufacturing behavior sequence[C]//Proceedings of Second International Conference on Mechanic Automation and Control Engineering, 2011:7568-7574.
[45] MARQUEZ M, WHITE A, GILL R. A hybrid neural network-feature-based manufacturability analysis of mould reinforced plastic parts[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2001, 215(8):1065-1079.
[46] SUNIL V B, PANDE S S. Automatic recognition of machining features using artificial neural networks[J]. International Journal of Advanced Manufacturing Technology, 2009, 41(9-10):932-947.
[47] ÖZTVRK N, ÖZTVRK F. Neural network based non-standard feature recognition to integrate CAD and CAM[J]. Computers in Industry, 2001, 45(2):123-135.
[48] ÖZTVRK N, ÖZTVRK F. Hybrid neural network and genetic algorithm based machining feature recognition[J]. Journal of Intelligent Manufacturing, 2004, 15(3):287-298.
[49] JIAN C F, LI M, QIU K Y, et al. An improved NBA-based STEP design intention feature recognition[J]. Future Generation Computer Systems, 2018, 88:357-362.
[50] BALU A, LORE K G, YOUNG G, et al. A deep 3D convolutional neural network based design for manufacturability framework[EB/OL]. (2016-12-07)[2018-12-06]. https://arxiv.org/pdf/1612.02141v1.pdf.
[51] GHADAI S, BALU A, SARKAR S, et al. Learning localized features in 3D CAD models for manufacturability analysis of drilled holes[J]. Computer Aided Geometric Design, 2018, 62:263-275.
[52] ZHANG Z B, JAISWAL P, RAI R. FeatureNet:machining feature recognition based on 3D convolution neural network[J]. Computer-Aided Design, 2018, 101:12-22.
[53] ZULKIFLI A H, MEERAN S. Decomposition of interacting features using a Kohonen self-organizing feature map neural network[J]. Engineering Applications of Artificial Intelligence, 1999, 12(1):59-78.
[54] MEERAN S, ZULKIFLI A H. Recognition of simple and complex interacting non-orthogonal features[J]. Pattern Recognition, 2002, 35(11):2341-2353.
[55] WHITE H. 1989. Learning in neural networks:A statistical perspective[J]. Neural Computation, 1989, 1(4):425-464.
[56] 谭昌柏, 周来水, 安鲁陵, 等. 逆向工程中基于BP网络的自动特征识别器的设计与实现[J]. 计算机辅助设计与图形学学报, 2005, 17(10):2305-2311. TAN C B, ZHOU L S, AN L L, et al. Design and implementation of an automatic feature recognizer based on BP network in reverse engineering[J]. Journal of Computer-Aided Design and Computer Graphics, 2005, 17(10):2305-2311(in Chinese).
[57] YI R Q, LI W H, WANG D, et al. Feature recognition based on graph decomposition and neural network[C]//Proceedings of Third International Conference on Convergence and Hybrid Information Technology, 2008:864-868.
[58] SHIN H, ROTH H R, GAO M, et al. Deep convolutional neural networks for computer-aided detection:CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016, 35(5):1285-1298.
[59] HAN D, LIU Q, FAN W. A new image classification method using CNN transfer learning and web data augmentation[J]. Expert Systems with Applications, 2018, 95:43-56.
[60] SHAO X Y, CHEN Z M, GAO L. A framework for manufacturing features recognition using a neural network trained by PSO algorithm[C]//Proceedings of Conference on Computational Engineering in Systems Applications, 2007:1371-1374.
[61] ZHA J, LU C, LV H G. A rare feature recognition approach based on Fuzzy ART neural networks[C]//Proceedings of Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing. Washington, D.C.:IEEE, 2009:57-62.
[62] 陶品, 张钹, 叶榛. 三维模型特征识别中的神经网络方法[J]. 计算机集成制造系统, 2002, 8(11):912-918. TAO P, ZHANG B, YE Z. Neural network method in 3D model feature recognition[J]. Computer Integrated Manufacturing Systems, 2002, 8(11):912-918(in Chinese).
[63] VERMA A K, RAJOTIA S. A review of machining feature recognition methodologies[J]. International Journal of Computer Integrated Manufacturing, 2010, 23(4):353-368.
[64] DING L, MATTHEWS J. A contemporary study into the application of neural network techniques employed to automate CAD/CAM integration for die manufacture[J]. Computers & Industrial Engineering, 2009, 57(4):1457-1471.