Fluid Mechanics and Flight Mechanics

Nonlinear lift increase of double swept waverider

  • LIU Chuanzhen ,
  • TIAN Junwu ,
  • BAI Peng ,
  • LIU Qiang
Expand
  • China Academy of Aerospace Aerodynamics, Beijing 100074, China

Received date: 2018-12-19

  Revised date: 2019-01-14

  Online published: 2019-02-15

Supported by

National Natural Science Foundation of China (11672281)

Abstract

The double swept waverider is a typical application of the planform-customized osculating-cone waverider. The satisfactory wide-velocity-range performance and the nonlinear increase of the lift for the double swept waverider at high angle of attack are well worth studying. The aerodynamic performance of the double swept waverider is calculated and compared with that of the single swept waveriders. Results suggest that the nonlinearity of the lift of the double swept waverider is stronger than that of the single swept waverider, and the nonlinearity effect increases as the Mach number increases. Since the main lift of the waverider comes from the lower surface rather than the upper surface, and the flow field above the upper surface in the hypersonic state is different from that in the subsonic state, the explanation to "vortex lift" remains questionable. This article proposes an alternative explanation that the nonlinear lift increase is related to the attachment of shock wave influenced by the sweep angle. The smaller the sweep angle is, the stronger the shock wave attaches to the waverider. In reference to the function of the oblique shock wave, the attachment ensures that the pressure increase via angle of attack is nonlinear, leading to the nonlinearity of the lift. When the shock wave detaches from the waverider, the increase of the lift brcomes approximately linear.

Cite this article

LIU Chuanzhen , TIAN Junwu , BAI Peng , LIU Qiang . Nonlinear lift increase of double swept waverider[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(10) : 122864 -122864 . DOI: 10.7527/S1000-6893.2019.22864

References

[1] NONWEILER T R F. Aerodynamic problems of manned space vehicles[J]. Journal of Royal Aeronautical Society, 1959, 63:521-530.
[2] JONES J G, MOORE K C, PIKE J, et al. A method for designing lifting configurations for high supersonic speeds using axisymmetric flow field[J]. Archive of Applied Mechanics, 1968, 37(1):56-72.
[3] RASMUSSEN M L. Waverider configurations derivedfrom inclined circular and elliptic cones[J]. Journal of Spacecraft and Rockets, 1980, 17(6):537-545.
[4] 乐贵高, 马大为, 李自勇. 椭圆锥乘波体高超声速流场数值计算[J]. 南京理工大学学报(自然科学版), 2006, 30(3):257-260. LE G G, MA D W, LI Z Y. Computation of hypersonic flowfields for elliptic-cone-derived waverider[J]. Journal of Nanjing University of Science and Technology (Natural Science), 2006, 30(3):257-260(in Chinese).
[5] 刘传振, 白鹏, 陈冰雁. 三维流场乘波体快速设计方法及多目标优化[J]. 宇航学报, 2016, 37(5):535-543. LIU C Z, BAI P, CHEN B Y. Rapid desing and multi-object optimization for waverider from 3D flow[J]. Journal of Astronautics, 2016, 37(5):535-543(in Chinese).
[6] LOBBIA M A, SUZUKI K. Experimental investigation of a Mach 3.5 waverider designed using computational fluid dynamics[J]. AIAA Journal, 2015, 53(6):1590-1601.
[7] SOBIECZKY H, DOUGHERTY F C, JONES K. Hypersonic waverider design from given shock wave[C]//The First International Waverider Symposium. Maryland:University of Maryland, 1990.
[8] SZEMA K, LIU Z, MUNIPALLI R. An efficient GUI design tool for high-speed airbreathing propulsion integration:AIAA-2010-4362[R]. Reston, VA:AIAA, 2010.
[9] 贺旭照, 倪鸿礼. 密切曲面锥乘波体-设计方法与性能分析[J]. 力学学报, 2011, 43(6):1077-1082. HE X Z, NI H L. Osculating curved cone (OCC) waverider:Design methods and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6):1077-1082(in Chinese).
[10] RODI P E. The osculating flowfield method of thewaverider geometry generation:AIAA-2005-0511[R]. Reston, VA:AIAA, 2005.
[11] RODI P E. Geometrical relationships for osculating cones and osculating flowfield waveriders[C]//The 49th Aerospace Science Meeting. Reston, VA:AIAA, 2011.
[12] 段焰辉,范召林,吴文华.定后掠角密切锥乘波体的生成和设计方法研究[J]. 航空学报,2016, 37(10):3023-3034. DUAN Y H, FAN Z L, WU W H. Research on the methods of generation and design of osculation cone waverider with constant angle of sweepback[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3023-3034(in Chinese).
[13] 刘传振, 白鹏, 陈冰雁. 双后掠乘波体设计及性能优势分析[J]. 航空学报, 2017,38(6):120808. LIU C Z, BAI P, CHEN B Y. Design and property advantages analysis of double swept waverider[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):120808(in Chinese).
[14] RODI E P. Vortex lift waverider configurations[C]//The 50th Aerospace Science Meeting. Reston, VA:AIAA, 2012.
[15] ZHAO Z T, HUANG W, YAN B B, et al. Design and high speed aerodynamic performance analysis of vortex lift waverider with a wide-speed range[J]. Acta Astronautica, 2018, 151:848-863.
[16] 刘传振,刘强,白鹏,等. 涡波效应宽速域气动外形设计[J]. 航空学报,2018, 39(6):121824. LIU C Z, LIU Q, BAI P, et al. Planform-controllable waverider design integrating shock and vortex effects[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):121824(in Chinese).
[17] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43:357-372.
[18] VENKATA KRISHNAN V. On the accuracy of limiters and convergence to steady state solutions:AIAA-1993-0880[R]. Reston, VA:AIAA, 1993.
[19] KERMANI M J, PLETT E G. Modified entropy correction formula for the Roe scheme:AIAA-2001-0083[R]. Reston, VA:AIAA, 2001.
[20] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[21] WANG Z J, CHEN R F. Fast, block lower-upper symmetric Gauss-Seidel scheme for arbitrary grids[J]. AIAA Journal, 2000, 38(12):2238-2245.
Outlines

/