Perspectives from Chief Designers

Review of large civil aircraft aerodynamic design

  • CHEN Yingchun ,
  • ZHANG Meihong ,
  • ZHANG Miao ,
  • MAO Jun ,
  • MAO Kun ,
  • WANG Qimin
Expand
  • 1. Commercial Aircraft Corporation of China, Ltd., Shanghai 201200, China;
    2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    3. Shanghai Aircraft Design and Research Institute, Shanghai 201210, China

Received date: 2018-10-26

  Revised date: 2018-10-29

  Online published: 2019-01-24

Abstract

In the development of civil aircraft in China, a large passenger aircraft aims at achieving "three reductions", drag reduction, weight reduction, and emission reduction as well as "four performances", safety, economy, comfort, and environmental protection. The aircraft adopts the conventional wing-nacelle layout, broadening the static stability and using the CFM Leapx-1C engine. These requirements put extremely high demands on the engineering applicability of aerodynamic design technology. Large civil aircraft is China's first civil aircraft that owns completely independent intellectual property rights. This paper reviews the advanced aerodynamic optimization design method, CFD analyses, and abundant wind tunnel verification tests used in the design process of the aircraft. Based on the works mentioned above, researchers used many technologies on the aircraft to reduce the drag, which contains supercritical wing design, efficient high-lift-device design, wing-nacelle integrated design, empennage design, winglet design, and refined drag reduction for components. This paper shows that it has made a series of progresses and breakthroughs in aerodynamic design capability and design method, achieving the goal of designing advanced civil aircraft with strong competitiveness.

Cite this article

CHEN Yingchun , ZHANG Meihong , ZHANG Miao , MAO Jun , MAO Kun , WANG Qimin . Review of large civil aircraft aerodynamic design[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(1) : 522759 -522759 . DOI: 10.7527/S1000-6893.2018.22759

References

[1] RENEAUX J. Overview on drag reduction technologies for civil transport aircraft[C]//European Congress on Computational Methods in Applied Sciences and Engineering, 2004.
[2] ROTH G, CROSSLEY W. Commercial transport aircraft conceptual design using a genetic algorithm based approach[C]//7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston, VA:AIAA, 1998.
[3] 李丽雅. 大型飞机增升装置技术发展综述[J]. 航空科学技术, 2015, 26(5):1-10. LI L Y. Review of high-lift device technology development on large aircrafts[J]. Aeronautical Science & Technology, 2015, 26(5):1-10(in Chinese).
[4] 邓一菊, 段卓毅. 波音777增升装置气动设计研究综述[J]. 飞机工程, 2014(2):8-12. DENG Y J, DUAN Z Y. An overview of the Boeing 777 high lift aerodynamic design[J]. Aircraft Engineering, 2014(2):8-12(in Chinese).
[5] OBERT E. Aerodynamic design of transport aircraft[M]. Amsterdam:IOS Press, 2009:1-42.
[6] PIPERNI P, ABDO M, FAFYEKE F. The application of multi-disciplinary optimization technologies to the design of a business jet[C]//10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, VA:AIAA, 2004.
[7] CLIFF S E, REUTHER J J, SAUNDERS D A, et al. Single-point and multipoint aerodynamic shape optimization of high-speed civil transport[J]. Journal of Aircraft, 2001, 38(6):997-1005.
[8] YAO W, CHEN X, LUO W, et al. Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6):450-479.
[9] 白俊强, 雷锐午, 杨体浩, 等. 基于伴随理论的大型客机气动优化设计研究进展[J]. 航空学报, 2019, 40(1):122642. BAI J Q, LEI R W, YANG T H, et al. The recent progress of adjoint-based aerodynamic optimization design for large civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):122642(in Chinese).
[10] OBAYASHI S, TAKANASHI S. Genetic optimization of target pressure distributions for inverse design methods[J]. AIAA Journal, 1996, 34(5):881-886.
[11] BERCI M, TOROPOV V V, HEWSON R W, et al. Multidisciplinary multifidelity optimization of a flexible wing aero foil with reference to a small UAV[J]. Structural and Multidisciplinary Optimization, 2014, 50(4):683-699.
[12] BUCKLEY H P, ZHOU B Y, ZINGG D W. Airfoil optimization using practical aerodynamic design requirements[J]. Journal of Aircraft, 2010, 47(5):1707-1719.
[13] KUMAR A, KEANE A J, NAIR P B, et al. Robust design of compressor fan blades against erosion[J]. Journal of Mechanical Design, 2006, 128(4):864-873.
[14] KIM H J, RHO O H. Aerodynamic design of transonic wings using the target pressure optimization approach[J]. Journal of Aircraft, 1998, 35(5):671-677.
[15] GARABEDIAN P, MCFADDEN G. Design of supercritical swept wings[J]. AIAA Journal, 1982, 20(3):289-291.
[16] JIN Y. Surrogate-assisted evolutionary computation:Recent advances and future challenges[J]. Swarm and Evolutionary Computation, 2011, 1(2):61-70.
[17] ZHANG Y F, CHEN H X. Computations of a twin-engine civil transporter using window embedment grid technology:AIAA-2008-0169[R]. Reston, VA:AIAA, 2008.
[18] JOHNSON F T, TINOCO E N, YU N J. Thirty years of development and application of CFD at Boeing commercial airplanes, seattle[J]. Computers & Fluids, 2005, 34(10):1115-1151.
[19] MAVRIPLIS D J, VASSBERG J C, TINOCO E N, et al. Grid quality and resolution issues from the drag prediction workshop series[J]. Journal of Aircraft, 2009, 46(3):935-950.
[20] LEE-RAUSCH E M, BUMING P G. CFD sensitivity analysis of a drag prediction workshop wing/body transport configuration:AIAA-2003-3400[R]. Reston, VA:AIAA, 2003.
[21] MARCUS L S, TOMMIE F L, WILLIAM L P. Integrated test and evaluation for the 21st century:AIAA-2004-6873[R]. Reston, VA:AIAA, 2004.
[22] 张锡金. 飞机设计手册(第6册):气动设计[M]. 北京:航空工业出版社, 2002:1-95. ZHANG X J. Aircraft design manual (Volume 6):Aerodynamic design[M]. Beijing:Aviation Industry Press, 2002:1-95(in Chinese).
[23] 孙智伟, 白俊强, 高正红, 等. 现代超临界翼型设计及其风洞试验[J]. 航空学报, 2015, 36(3):804-818. SUN Z W, BAI J Q, GAO Z H, et al. Design and wind tunnel test investigation of the modern supercritical airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):804-818(in Chinese).
[24] LI R Z, DENG K W, ZHANG Y F, et al. Pressure distribution guided supercritical wing optimization[J]. Chinese Journal of Aeronautics, 2018, 31(9):1842-1854.
[25] LI R Z, ZHANG Y F, CHEN H X. Evolution and development of "man-in-loop" in aerodynamic optimization design[J]. Acta Aerodynamica Sinica, 2017, 35(4):529-543.
[26] ZHAO T, ZHANG Y F, CHEN H X. Multi-objective aerodynamic optimization of supercritical wing with sub-stantial pressure constraints[C]//AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2015:37-55.
[27] ZHANG Y F, CHEN H X, ZHANG M, et al. Supercritical wing design and optimization for transonic civil airplane:AIAA-2011-0027[R]. Reston, VA:AIAA, 2011.
[28] WAKAYAMA S, KROO I. Subsonic wing planform design using multidisciplinary optimization[J]. Journal of Aircraft, 1995, 32(4):746-753.
[29] SHEN G, BAI J, LIU N. Mechanical and aerodynamic study of 2D trailing edge variable camber system for civil transport aircraft[C]//20178th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), 2017.
[30] 白俊强, 陈颂, 华俊, 等. 基于伴随方程和自由变形技术的跨声速机翼气动设计方法研究[J]. 空气动力学学报, 2014, 32(6):820-826. BAI J Q, CHEN S, HUA J, et al. Transonic wing aerodynamic design based on continuous adjoint method and free form deform technique[J]. Acta Aerodynamica Sinica, 2014, 32(6):820-826(in Chinese).
[31] EDI P, FIELDING J P. Civil-transport wing design concept exploiting new technologies[J]. Journal of Aircraft, 2006, 43(4):932-940.
[32] RECKZEH D. Aerodynamic design of airbus high-lift wings in a multidisciplinary environment[C]//European Congress on Computational Methods in Applied Sciences and Engineering, 2004.
[33] RUDOLPH P. High-lift systems on commercial subsonic airliners:NASA CR 4746[R].Washington, D.C.:NASA, 1996.
[34] LIU Y, BAI J, LIVNE E. Robust optimization of varia-ble-camber continuous trailing-edge flap static aeroelastic action[J]. AIAA Journal, 2017, 55(3):1031-1043.
[35] 周旺仪, 白俊强, 乔磊, 等. 变弯翼型与增升装置多目标气动优化设计研究[J]. 西北工业大学学报, 2018, 36(1):83-90. ZHOU W Y, BAI J Q, QIAO L, et al. A study of multi-objective aerodynamic optimization design for variable camber air-foils and high lift devices[J]. Journal of Northwestern Polytechnical University, 2018, 36(1):83-90(in Chinese).
[36] 刘睿, 白俊强, 刘南, 等. 二维增升装置气动外形与驱动机构综合优化研究[J]. 西北工业大学学报, 2015, 33(4):525-532. LIU R, BAI J Q, LIU N, et al. Researching aerodynamic-mechanical optimization of 2D high-lift system[J]. Journal of Northwestern Polytechnical University, 2015, 33(4):525-532(in Chinese).
[37] 邱亚松, 白俊强, 李亚林, 等. 复杂几何细节对增升装置气动性能影响研究[J]. 航空学报, 2012, 33(3):421-429. QIU Y S, BAI J Q, LI Y L, et al. Study on influence of complex geometry details on the aerodynamic performance of high-lift system[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3):421-429(in Chinese).
[38] GEYR H F V, SCHADE N. CFD prediction of maximum lift effects on realistic high-lift-commercial-aircraft-configurations within the European project EUROLIFT Ⅱ:AIAA-2007-4299[R]. Reston, VA:AIAA, 2007.
[39] 白俊强, 刘南, 邱亚松, 等. 大型民用运输机短舱涡流片增升效率以及参数影响研究[J]. 西北工业大学学报, 2013, 31(4):522-529. BAI J Q, LIU N, QIU Y S, et al. Investigation on influence of nacelle chine of large civil transport aircraft on high-lift efficiency and on influence of relevant parameters[J]. Journal of Northwestern Polytechnical University, 2013, 31(4):522-529(in Chinese).
[40] 张宇飞, 陈海昕, 符松, 等. 一种实用的运输类飞机机翼/发动机短舱一体化优化设计方法[J]. 航空学报, 2012, 33(11):1993-2001. ZHANG Y F, CHEN H X, FU S, et al. A practical optimization design method for transport aircraft wing/nacelle integration[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):1993-2001(in Chinese).
[41] 杨体浩, 白俊强, 辛亮, 等. 考虑静气动弹性影响的客机机翼气动/结构一体化设计研究[J]. 空气动力学学报, 2017, 35(4):598-609. YANG T H, BAI J Q, XIN L, et al. Aerodynamic/structural inte-grated design for aircraft wing with static aeroelasticity effect[J]. Acta Aerodynamica Sinica, 2017, 35(4):598-609(in Chinese).
[42] 巨龙, 白俊强, 孙智伟, 等. 客机机翼环量分布的气动/结构一体化设计[J]. 航空学报, 2013, 34(12):2725-2732. JU L, BAI J Q, SUN Z W, et al. Integrated aero-structure design of circulation distribution for commercial aircraft wing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2725-2732(in Chinese).
[43] ZHANG Y F, CHEN H X, ZHANG W S, et al. Wing/engine integrated optimization based on Navier-Stokes equations:AIAA-2012-1046[R]. Reston, VA:AIAA, 2012.
[44] ZHANG M H, WANG Y K, FU S, Generation mechanism and reduction method of induced drag produced by interacting wingtip vortex system[J]. Journal of Mechanics, 2017, 34(2):231-241.
[45] 白俊强, 王丹, 何小龙, 等. 改进的RBF神经网络在翼梢小翼优化设计中的应用[J]. 航空学报, 2014, 35(7):1865-1873. BAI J Q, WANG D, HE X L, et al. Application of an improved RBF neural network on aircraft winglet optimization design[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1865-1873(in Chinese).
[46] 陈颂, 白俊强, 史亚云, 等. 民用客机机翼/机身/平尾构型气动外形优化设计[J]. 航空学报, 2015, 36(10):3195-3207. CHEN S, BAI J Q, SHI Y Y, et al. Aerodynamic shape optimization design of civil jet wing-body-tail configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3195-3207(in Chinese).
Outlines

/