Material Engineering and Mechanical Manufacturing

Tumbling target despun based on robotic flexible brush

  • WU Hao ,
  • SUN Shengxin ,
  • WEI Cheng ,
  • ZHANG Haibo ,
  • ZHAO Yang
Expand
  • 1. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China;
    2. Beijing Institute of Control Engineering, Beijing 100000, China

Received date: 2018-08-01

  Revised date: 2018-09-03

  Online published: 2019-01-04

Supported by

Open Fund of National Defense Key Discipline Laboratory of Micro-Spacecraft Technology (HIT.KLOF.MST.201703); Open Fund of Science and Technology on Space Intelligent Control Laboratory (ZDSYS-2017-07)

Abstract

A despun mechanism for a flexible deceleration brush is designed and installed at the end of the seven-degree-freedom robotic arm. Despun is achieved through a contact collision with the tumbling target sailboard. A dynamic model for the flexible deceleration brush is derived by using the absolute nodal coordinate formulation, and the contact collision of the brush is analyzed. The dynamic modeling of the free-floating space robot and the control of the base attitude are studied. By using the sliding mode control based on the computed torque method, a seven-degree-freedom robotic arm with uncertain terminal parameters is controlled. The sliding mode control has the characteristics of fast response and in-sensitivity to parameter changes and disturbance, ensuring the global robustness and stability of the system. It is beneficial to reduce the despun time and improves the efficiency of the despun. The results of despun simulation of PD control and sliding mode control show that the strategy can successfully eliminate the initial rotation speed. The degree of despun is over 90%, which is feasible and effective.

Cite this article

WU Hao , SUN Shengxin , WEI Cheng , ZHANG Haibo , ZHAO Yang . Tumbling target despun based on robotic flexible brush[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(5) : 422587 -422587 . DOI: 10.7527/S1000-6893.2018.22587

References

[1] 路勇, 刘晓光, 周宇, 等. 空间翻滚非合作目标消旋技术发展综述[J]. 航空学报, 2018, 39(1):021302. LU Y, LIU X G, ZHOU Y, et al. Review of detumbling technologies for active removal of uncooperative targets[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):021302(in Chinese).
[2] 周秀华. 单次任务中多块空间碎片主动移除的仿真分析[D]. 北京:中国科学院大学, 2017:3-8. ZHOU X H. The simulation analysis of active debris removal of multiple targets in a single task[D]. Beijing:The University of Chinese Academy of Sciences, 2017:3-8(in Chinese).
[3] 耿云海, 卢伟, 陈雪芹. 在轨服务航天器对失控目标的姿态同步控制[J]. 哈尔滨工业大学学报, 2012, 44(1):1-6. GENG Y H, LU W, CHEN X Q. Attitude synchronization control of on-orbit servicing spacecraft with respect to out-of-control target[J]. Journal of Harbin Institute of Technology, 2012, 44(1):1-6(in Chinese).
[4] DANESHJOU K, ALIBAKHSHI R. Multibody dynamical modeling for spacecraft docking process with spring-damper buffering device:A new validation approach[J]. Advances in Space Research, 2018, 61(1):497-512.
[5] NISHIDA S I, KAWAMOTO S. Strategy for capturing of a tumbling space debris[J]. Acta Astronaut, 2011, 68(1):113-120.
[6] HUANG P, WANG M, MENG Z, et al. Reconfigurable spacecraft attitude takeover control in post-capture of target by space manipulators[J]. Journal of the Franklin Institute, 2016, 353(9):1985-2008.
[7] HUANG P, WANG M, MENG Z, et al. Adaptive control for space debris removal with uncertain kinematics, dynamics and states[J]. Acta Astronautica, 2016, 128:416-430.
[8] MATUNAGA S, KANZAWA T, OHKAMI Y. Rotational motion-damper for the capture of an uncontrolled floating satellite[J]. Control Engineering Practice, 2001, 9(2):199-205.
[9] YOSHIKAWA S, YAMADA K. Impulsive control for angular momentum management of tumbling spacecraft[J]. Acta Astronautica, 2007, 60(10-11):810-819.
[10] NATARAJAN A, SCHAUB H. Hybrid control of orbit normal and along-track two-craft Coulomb tethers[J]. Aerospace Science and Technology, 2009, 13(4-5):183-191.
[11] PERGOLA P, RUGGIERO A, ANDRENUCCI M, et al. Expanding foam application for active space debris removal systems[C]//Proceedings of 62nd International Astronautical Congress IAC11. 2011:6.
[12] 林来兴. 空间碎片现状与清理[J]. 航天器工程, 2012, 21(3):1-10. LIN L X. Status and removal of space debris[J]. Spacecraft Engineering, 2012, 21(3):1-10(in Chinese).
[13] 徐浩东, 李小将, 李怡勇, 等. 地基激光空间碎片清除技术研究[J]. 装备指挥技术学院学报, 2011, 22(3):71-75. XU H D, LI X J, LI Y Y, et al. Research on technology of space debris removal using ground-based laser[J]. Journal of the Academy of Equipment Command & Technology, 2011, 22(3):71-75(in Chinese).
[14] SMITH E S, SEDWICK R J, MERK J F, et al. Assessing the potential of a laser-ablation-propelled tug to remove large space debris[J]. Journal of Spacecraft and Rockets, 2013, 50(6):1268-1276.
[15] PHIPPS C R, REILLY J P. ORION:Clearing near-Earth space debris in two years using a 30-kW repetitively-pulsed laser[C]//XI International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference. International Society for Optics and Photonics, 1997, 3092:728-732.
[16] BONDARENKO S, LYAGUSHIN S, SHIFRIN G. Prospects of using lasers and military space technology for space debris removal[C]//Second European Conference on Space Debris. 1997, 393:703.
[17] 童超. 基于模糊趋近律的漂浮基空间机器人的滑模控制研究[D]. 福州:福州大学, 2016:34-43. TONG C. Fast sliding mode control research of free-floating space robot which is based on the fuzzy reaching law[D]. Fuzhou:Fuzhou University, 2016:34-43(in Chinese).
[18] 谢立敏, 陈力. 漂浮基柔性关节-柔性臂空间机器人运动非线性滑模控制及双重弹性振动主动抑制[J]. 中国机械工程, 2013, 24(19):2657-2663. XIE L M, CHEN L. Nonlinear sliding mode motion control and double elastic vibration active suppression of free-floating flexible-link space robot[J]. China Mechanical Engineering, 2013, 24(19):2657-2663(in Chinese).
[19] KAWAMURA A, ITOH H, SAKAMOTO K. Chattering reduction of disturbance observer based sliding mode control[J]. IEEE Transactions on Industry Applications, 1994, 30(2):456-461.
[20] MOBAYEN S, BALEANU D, TCHIER F. Second-order fast terminal sliding mode control design based on LMI for a class of non-linear uncertain systems and its application to chaotic systems[J]. Journal of Vibration and Control, 2017, 23(18):2912-2925.
[21] OLIVEIRA T R, CUNHA J P V S, LIU H. Adaptive sliding mode control based on the extended equivalent control concept for disturbances with unknown bounds[M]. 2018:149-163.
[22] YANG B, YU T, SU H, et al. Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers[J]. Applied Energy, 2018, 210:711-723.
[23] 张瑞雄. 空间飞网拖曳动力学研究[D]. 哈尔滨:哈尔滨工业大学, 2017:10-17. ZHANG R X. Research on dynamics of the space net dragging system[D]. Harbin:Harbin Institute of Technology, 2017:10-17(in Chinese).
[24] 鄂薇, 魏承, 谭春林, 等. 视觉物质点跟踪方法在柔索模型验证中的应用[J]. 航空学报, 2017, 38(12):221334. E W, WEI C, TAN C L, et al. Verification of flexible cable model using visual material point tracking[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):221334(in Chinese).
Outlines

/