Solid Mechanics and Vehicle Conceptual Design

Finite element modeling and crashworthiness analysis of large aeroplane sub-cargo structure

  • FENG Zhenyu ,
  • XIE Jiang ,
  • LI Henghui ,
  • CHENG Kun ,
  • MA Congyao ,
  • MOU Haolei
Expand
  • 1. Key Laboratory of Civil Aircraft Airworthiness Technology, CAAC, Tianjin 300300, China;
    2. School of Airworthiness, Civil Aviation University of China, Tianjin 300300, China

Online published: 2018-10-19

Supported by

Aeronautical Science Foundation of China (2017ZD67002); Boeing Foundation (20180159214); Civil Aviation University of China Special Project of Fundamental Research Funds for the Central University (3122016C011)

Abstract

To research the crashworthiness characteristics of the large aeroplane and numerical analysis, a finite element model for typical sub-cargo structure is established and the solution and analysis of explicit dynamics are realized. The dynamic behavior of the structural response, energy absorption and failure of the inverted and clamped sub-cargo structure under the vertical impact of 200 kg drop weight with a 7 m/s velocity are investigated. The failure mode, impact response and energy absorption and dissipation characteristics of structure are identified and analyzed during the impact process. The simulation results show that the fuselage frame components and the support assembly of sub-cargo structure are the main energy absorption structures under this crash condition. The absorption of impact energy mainly depends on the plastic deformation and failure of the structure, while the energy absorption from the fasteners joints is only about 1%.

Cite this article

FENG Zhenyu , XIE Jiang , LI Henghui , CHENG Kun , MA Congyao , MOU Haolei . Finite element modeling and crashworthiness analysis of large aeroplane sub-cargo structure[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(2) : 522394 -522394 . DOI: 10.7527/S1000-6893.2018.22394

References

[1] ABRAMOWITZ A, SMITH T G, VU T, et al. Vertical drop test of a narrow-body transport fuselage section with overhead stowage bins:DOT/FAA/AR-01/100[R]. Washinton, D.C.:Federal Aviation Administration, 2002.
[2] LOGUE T V, MCGUIRE R J, REINHARDT J W, et al. Vertical drop test of a narrow-body fuselage section with overhead stowage bins and auxiliary fuel tank on board:DOT/FAA/CT-94/116[R]. Washinton, D.C.:Federal Aviation Administration, 1995.
[3] ABRAMOWITZ A, SMITH T G, VU T. Vertical drop test of a narrow-body transport fuselage section with conformable auxiliary fuel tank onboard:DOT/FAA/AR-00/56[R]. Washinton, D.C.:Federal Aviation Administration, 2000.
[4] KAREN E, JACKSON, EDWIN L, et al. Crash simulation of a vertical drop test of a B737 fuselage section with overhead bins and luggage[R]. Hampton, VA:NASA Langley Research Center, 2001.
[5] HASHEMI R. Sub-component dynamic tests on an Airbus A320 rear fuselage[R] Bedfordshire:Cranfield Impact Centre Ltd., 1994.
[6] LEPAG F, CARCIENTE R. A320 fuselage section vertical drop test-Part 2 Test results:CEAT test report S95 5776/2[R]. Toulouse:CEAT, 1995.
[7] LUTZENBURGER M. Simulation of the A320 section drop test using the hybrid code KRASH:DLR-Report IB 435-95/24[R]. Stuttgart:DLR, 1995.
[8] MALHERBE B, LANGRAND B, CHARLES J L, et al. Improvement of crash models of large aeronautical structure[C]//ICAS 2000 Congress, 2000:1-10.
[9] 刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估[J]. 航空学报, 2013, 34(9):2130-2140. LIU X C, GUO J, SUN X S, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2130-2140(in Chinese).
[10] 刘小川, 周苏枫, 孙侠生, 等. 民用飞机客舱地板下部结构吸能优化[J]. 机械科学与技术, 2011, 30(11):1968-1972. LIU X C, ZHOU S F, SUN X S, et al. Energy absorption optimization of the lower structure of civil aircraft sub-cabin structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(11):1968-1972(in Chinese).
[11] 刘小川, 周苏枫,马君峰,等. 民机客舱下部吸能结构分析与试验相关性研究[J]. 航空学报, 2012, 33(12):2202-2210. LIU X C, ZHOU S F, MA J F, et al. Correlation study of crash analysis and test of civil airplane subfloor energy absorptionstructure[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2202-2210(in Chinese).
[12] 牟让科, 刘小川. 民机机身结构和内部设施适坠性设计评估与验证指南[M]. 西安:西北工业大学出版社, 2016. MOU R K, LIU X C. Guide for evaluation and verification of the airframe structure and internal equipment design for civil aircraft[M]. Xi'an:Northwestern Polytechnical University Press, 2016(in Chinese).
[13] 任毅如, 向锦武, 罗漳平, 等. 客舱地板斜撑杆对民机典型机身段耐撞性能的影响[J]. 航空学报, 2010, 31(2):271-276. REN Y R, XIANG J W, LUO Z P, et al. Influence of cabin floor diagonal strut on crashworthiness of typical fuselage section of civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2):271-276(in Chinese).
[14] XUE P, DING L, QIAO F, et al. Crashworthiness study of a civil aircraft fuselage section[J]. Latin American Journal of Solids & Structures, 2014, 11(9):1615-1627.
[15] ZHU X, FENG Y, XUE X, et al. Evaluate the crashworthiness response of an aircraft fuselage section with luggage contained in the cargo hold[J]. International Journal of Crashworthiness, 2017(2):1-18.
[16] ZOU T C, MOU H L, FENG Z Y. Research on effects of oblique struts on crashworthiness of composite fuse-lage sections[J]. Journal of Aircraft, 2012, 49(6):2059-2063.
[17] FENG Z Y, MOU H L, ZOU T C, et al. Research on effects of composite skin on crashworthiness of composite fu-selage section[J]. International Journal of Crashworthiness, 2013, 18(5):459-464.
[18] MOU H L, ZOU T C, FENG Z Y, et al. Crashworthiness analysis and evaluation of fuselage section with sub-floor composite sinusoidal specimens[J]. Latin American Journal of Solids and Structures, 2016, 13(6):1187-1202.
[19] REN Y R, XIANG J W. Energy absorption structures design of civil aircraft to improve crashworthiness[J]. Aeronautical Journal, 2016, 118(1202):383-398.
[20] WAIMER M, FESER T, SCHATROW P, et al. Crash concepts for CFRP transport aircraft-Comparison of the traditional bend frame concept versus the developments in a tension absorbers concept[J]. International Journal of Crashworthiness, 2018, 23(2):193-218.
[21] WIGGENRAAD J F M, MICHIELSEN A L P J, SANTORO D, et al. Development of a crashworthy composite fuselage structure for a commuter aircraft:NLR-TP-99532[R]. Amsterdam:NedTrain Consulting NLR, 1999.
[22] WAIMER M, KOHLGRÜBER D, KECK R, et al. Contribution to an improved crash design for a composite transport aircraft fuselage-Development of a kinematics model and an experimental component test setup[J]. CEAS Aeronautical Journal, 2013, 4:265-275.
[23] MOSTAFA R. Virtual test & simulation[C]//Engineering, Operations & Technology|Boeing Research & Technology, 2013.
[24] HACHENBERG D, LAVINGE V, MAHE M. Crashworthiness of fuselage hybrid structure[C]//Eighth Triennial International Aircraft Fire and Cabin Safety Research Conference (8IARCSFC), 2016.
[25] ARNAUDEAU F, MAHE M, DELETOMBE E, et al. Crashworthiness of aircraft composites structures[C]//ASME 2002 International Mechanical Engineering Congress and Exposition, 2002:31-40.
[26] DELSART D, PORTEMONT G, WAIMER M. Crash testing of a CFRP commercial aircraft sub-cargo fuselage section[J]. Procedia Structural Integrity, 2016, 2:2198-2205.
[27] GUIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety[J]. Progress in Aerospace Sciences, 2018, 98:106-123.
[28] CAPRIO F D, IGNARRA M, MARULO F, et al. Design of composite stanchions for the cargo subfloor structure of a civil aircraft[J]. Procedia Engineering, 2016, 167:88-96.
[29] FEDERAL AVIATION ADMINISTRATION. Metallic materials properties development and standardization (MMPDS):MMPDS-08[S]. Washington, D.C.:Federal Aviation Administration, 2003.
Outlines

/