Fluid Mechanics and Flight Mechanics

Accurate modeling and control for parawing unmanned aerial vehicle

  • ZHU Hong ,
  • SUN Qinglin ,
  • WU Wannan ,
  • SUN Mingwei ,
  • CHEN Zengqiang
Expand
  • College of Artificial Intelligence, Nankai University, Tianjin 300350, China

Received date: 2018-08-07

  Revised date: 2018-09-04

  Online published: 2018-09-25

Supported by

National Natural Science Foundation of China (61273138)

Abstract

The leading edge incision and the trailing edge deflection are essential to the calculation of the aerodynamic parameters of the canopy. To achieve precise control of the parawing Unmanned Aerial Vehicle (UAV), the accuracy of the dynamic model of the parafoil system is improved. Taking the leading edge incision and the trailing edge deflection into account, the lift and drag coefficients are calculated by combining the computational fluid dynamics with the lifting-line theory. The least square method is used to identify the relationships between the lift and drag coefficients and the angle of attack, the size of the incision and the brake deflection, realizing the accurate calculation of the aerodynamic parameters of the canopy. And the results are incorporated into the six degree of freedom dynamic model for a parawing UAV. A simulation of trajectory tracking control based on the revised dynamic model is conducted. By comparing the simulation results with the airdrop testing data, the accuracy of the proposed method is verified, shedding lights on the simulation of the parawing UAV and the design of the controller.

Cite this article

ZHU Hong , SUN Qinglin , WU Wannan , SUN Mingwei , CHEN Zengqiang . Accurate modeling and control for parawing unmanned aerial vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(6) : 122593 -122593 . DOI: 10.7527/S1000-6893.2018.22593

References

[1] LUO S Z, SUN Q L, TAO J, et al. Trajectory planning and gathering for multiple parafoil systems based on pseudo-spectral method[C]//35th Chinese Control Conference, 2016:2553-2558.
[2] 郭海军. 伞翼无人机发展前景与展望[C]//2017年(第三届)中国航空科学技术大会论文集(上册). 北京:中国航空学会, 2017:6. GUO H J. Developing prospect analysis of parawing UAV[C]//Proceedings of the 2017(3rd) China Aeronautical Science and Technology Conference (Volume 1). Beijing:Chinese Society of Aeronautics and Astronautics, 2017:6(in Chinese).
[3] 韩雅慧, 杨春信, 肖华军, 等. 翼伞精确空投系统关键技术和发展趋势[J]. 兵工自动化, 2012, 31(7):1-7. HAN Y H, YANG C X, XIAO H J, et al. Review on key technology and development of parafoil precise airdrop systems[J]. Ordnance Industry Automation, 2012, 31(7):1-7(in Chinese).
[4] 朱旭, 曹义华. 翼伞弧面下反角、翼型和前缘切口对翼伞气动性能的影响[J]. 航空学报, 2012, 33(7):1189-1200. ZHU X, CAO Y H. Effects of arc-anhedral angle, airfoil and leading edge cut on parafoil aerodynamic performance[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7):1189-1200(in Chinese).
[5] 张春, 曹义华. 基于弱耦合的翼伞气动变形数值模拟[J]. 北京航空航天大学学报, 2013, 39(5):605-609. ZHANG C, CAO Y H. Numerical simulation of parafoil aerodynamics and structural deformation based on loose coupled method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5):605-609(in Chinese).
[6] 陈奇, 赵敏, 赵志豪, 等. 多自主翼伞系统建模及其集结控制[J]. 航空学报, 2016, 37(10):3121-3130. CHEN Q, ZHAO M, ZHAO Z H, et al. Multiple autonomous parafoils system modeling and rendezvous control[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3121-3130(in Chinese).
[7] 黄炎, 张红英, 杨璐瑜, 等. 前缘切口参数对大型冲压式翼伞的性能影响分析[J]. 航天返回与遥感, 2017, 38(5):10-17. HUANG Y, ZHANG H Y, YANG L Y, et al. Analysis of leading edge cut parameters on performance of large ram-air parachute[J]. Spacecraft Recovery & Remote Sensing, 2017, 38(5):10-17(in Chinese).
[8] 谢亚荣. 空投任务下翼伞建模与飞行控制研究[D]. 南京:南京航空航天大学, 2011:7-19. XIE Y R. Research on modeling and flight control of parafoil under the airdrop mission[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011:7-19(in Chinese).
[9] MULLER S, WAGNER O, SACHS G. A high-fidelity nonlinear multibody simulation model for parafoil systems:AIAA-2013-2120[R]. Reston, VA:AIAA, 2013.
[10] 胡文治, 陈建平, 张红英, 等. 翼伞空投系统的动力学建模与飞行控制仿真[J]. 航空计算技术, 2017, 47(3):70-73. HU W Z, CHEN J P, ZHANG H Y, et al. Dynamic modeling and flight control simulation of parafoil aerial delivery systems[J]. Aeronautical Computing Technique, 2017, 47(3):70-73(in Chinese).
[11] 孙青林, 梁炜, 陈增强, 等. 襟翼偏转翼伞气动性能数值模拟分析[J]. 哈尔滨工业大学学报, 2017, 49(4):48-54. SUN Q L, LIANG W, CHEN Z Q, et al. Numerical simulation analysis for aerodynamic performance of parafoil with flap deflection[J]. Journal of Harbin Institute of Technology, 2017, 49(4):48-54(in Chinese).
[12] 孙青林, 梁炜, 陶金, 等. 基于CFD与最小二乘法的翼伞动力学建模[J]. 北京理工大学学报, 2017, 37(2):157-162. SUN Q L, LIANG W, TAO J, et al. Dynamic modeling of parafoil based on CFD simulation and least squares[J]. Transactions of Beijing Institute of Technology, 2017, 37(2):157-162(in Chinese).
[13] TAO J, SUN Q, LIANG W, et al. CFD based dynamic modelling of parafoil systems in the wind environment[C]//Proceedings of the 12th International FLINS Conference, 2016:668-674.
[14] 郑成. 翼伞飞行运动建模与翼伞空投控制技术研究[D]. 南京:南京航空航天大学, 2011:1-9. ZHENG C. Research on parafoil modeling and control technology of parafoil airdrop system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011:1-9(in Chinese).
[15] 熊菁. 翼伞系统动力学与归航方案研究[D]. 长沙:国防科学技术大学, 2005:25-49. XIONG J. Research on the dynamics and homing project of parafoil system[D]. Changsha:National University of Defense Technology, 2005:25-49(in Chinese).
[16] 聂帅, 曹义华, 田似营. 前缘切口对翼伞气动性能的影响[J]. 航空动力学报, 2016, 31(6):1477-1485. NIE S, CAO Y H, TIAN S Y. Effect on parafoil aerodynamic performance of leading edge[J]. Journal of Aerospace Power, 2016, 31(6):1477-1485(in Chinese).
[17] 贺卫亮. 利用风洞试验研究冲压翼伞的升阻特性[J]. 航空学报, 1999, 20(S1):76-78. HE W L. Study on lift-drag characteristic of ram air parachute in wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(S1):76-78(in Chinese).
[18] NICOLAIDES J D. Parafoil wind tunnel tests[D]. Notre Dame, IN:University of Notre Dame, 1971.
[19] SUN H W, WU Q. Least square regression with indefinite kernels and coefficient regularization[J]. Applied & Computational Harmonic Analysis, 2011, 30(1):96-109.
[20] WU W N, SUN Q L, LUO S Z, et al. Accurate calculation of aerodynamic coefficients of parafoil airdrop system based on computational fluid dynamic[J]. International Journal of Advanced Robotic Systems, 2018, 15(2):1-16.
[21] ZHU E L, PANG J F, SUN N, et al. Airship horizontal trajectory tracking control based on active disturbance rejection control (ADRC)[J]. Nonlinear Dynamics, 2012, 75(4):725-734.
[22] 常冠清, 张泽, 仇海涛, 等. 翼伞系统动力学建模与仿真研究[J]. 导航与控制, 2016, 15(6):33-40. CHANG G Q, ZHANG Z, QIU H T, et al. Dynamic modeling and simulation of parafoil aerial delivery system[J]. Navigation and Control, 2016, 15(6):33-40(in Chinese).
[23] YAN S, CAI K Q. A multi-objective multi-memetical gorithm for network-wide conflict-free 4D flight trajectories planning[J]. Chinese Journal of Aeronautics, 2017, 30(3):1161-1173.
Outlines

/