Fluid Mechanics and Flight Mechanics

Aircraft flight safety envelope protection under icing conditions based on adaptive neural network dynamic inversion

  • WEI Yang ,
  • XU Haojun ,
  • XUE Yuan ,
  • ZHENG Wuji ,
  • LI Zhe ,
  • PEI Binbin
Expand
  • 1. Aeronautics Engineering College, Air Force Engineering University, Xi'an 710038, China;
    2. Fourth Training Brigade, Shijiazhuang Flighting College of Air Force, Baoding 074212, China

Received date: 2018-06-27

  Revised date: 2018-07-18

  Online published: 2018-09-19

Supported by

National Basic Research Program of China (2015CB755802); National Natural Science Foundation of China (61503406); Civil Aircraft Special Research (MJ-2015-F-019)

Abstract

Flight safe envelope protection of iced aircraft has become an effective solution to the flight safety under icing conditions. Based on the good tracking performance and strong robustness of the adaptive neural network dynamic inversion control, an envelope protection method is proposed to obtain the available deflection angle of control surface by using the limit value of the key flight safety parameters as input of control loop. The dynamic model of the aircraft is established, and a high precision numerical simulation method is used to obtain the icing aerodynamic database. The adaptive neural network dynamic inversion control law for an aircraft is designed. By introducing the single hidden layer neural network in dynamic inversion, the uncertainty inverse error is compensated adaptively, and the robustness of the control system is enhanced. The closed loop envelope protection system in pitch attitude hold mode under icing conditions is designed. An automatic throttle control system is designed on the assumption that the minimum flying speed is the same as the estimated value of the minimum level of the flight speed and the design is used to protect the flight speed. The simulation results show that the designed control law has strong robustness. The dynamic response of the aircraft state parameters is analyzed in the case of the linear increase of icing severity. The simulation results show that the designed envelope protection system can realize the real-time protection of the key security parameters such as the angle of attack and the speed during the ice-tolerant flight.

Cite this article

WEI Yang , XU Haojun , XUE Yuan , ZHENG Wuji , LI Zhe , PEI Binbin . Aircraft flight safety envelope protection under icing conditions based on adaptive neural network dynamic inversion[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(5) : 122488 -122488 . DOI: 10.7527/S1000-6893.2018.22488

References

[1] BRAGG M B, PERKINS W R, SARTER N B, et al. An interdisciplinary approach to inflight aircraft icing safety:AIAA-1998-0095[R]. Reston, VA:AIAA, 1998.
[2] BRAGG M B, BASAR T, PERKINS W R, et al. Smart icing systems for aircraft icing safety:AIAA-2002-0813[R]. Reston, VA:AIAA, 2002.
[3] SHARMA V, VOULGARIS P G. Aircraft Autopilot analysis and envelope protection for operation under icing conditions[J]. Journal of Guidance, Control and Dynamics, 2004, 27(3):454-465.
[4] MERRET J M, HOSSAIN K N, BRAGG M B. Envelope protection and atmospheric disturbances in icing encounters:AIAA-2002-0814[R]. Reston, VA:AIAA, 2002.
[5] HOSSAIN K N, SHARMA V, BRAGG M B, et al. Envelope protection and control adaptation in icing encounters:AIAA-2003-0025[R]. Reston, VA:AIAA, 2003.
[6] GINGRAS D R, BARNHART B, RANAUDO R, et al. Envelope protection for in-flight ice contamination:AIAA 2009-1458[R]. Reston, VA:AIAA, 2009.
[7] GINGRAS D R, BARNHART B, RANAUDO R, et al. Development and implementation of a model-driven envelope protection system for in-flight ice contamination:AIAA-2010-8141[R]. Reston, VA:AIAA, 2010.
[8] RANAUDO R, MARTOS B, NORTON B, et al. Piloted simulation to evaluate the utility of a real time envelope protection system for mitigating in-flight icing hazards:AIAA-2010-7987[R]. Reston, VA:AIAA, 2010.
[9] MARTOS B, RANAUDO R, NORTON B, et al. Development, implementation, and pilot evaluation of a model-driven envelope protection system to mitigate the hazard of in-flight ice contamination on a twin-engine commuter aircraft:NASA/CR-2014-218320[R]. Washington, D. C.:NASA, 2014.
[10] LOMBAERTS T, LOOYE G, CHU P, et al. Pseudo control hedging and its application for safe flight envelope protection[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2010.
[11] YAVRUCUK I, PRASAD J V R, UNNIKRISHNAN S. Envelope protection for autonomous unmanned aerial vehicles[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1):248-261.
[12] LOMBAERTS T, LOOYE G, ELLERBROEK J, et al. Design and piloted simulator evaluation of adaptive safe flight envelope protection algorithm[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2016.
[13] 张智勇. 结冰飞行动力学特性与包线保护控制律研究[D]. 南京:南京航空航天大学, 2006. ZHANG Z Y. Research on iced aircraft flight dynamics characteristics and envelope protection control law[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2006(in Chinese).
[14] 应思斌, 艾剑良. 飞机结冰包线保护对开环飞行性能影响与仿真[J]. 系统仿真学报, 2010, 22(10):2273-2301. YING S B, AI J L. Simulation of aircraft flight envelope protect in icing encounters effects on open loop dynamic[J]. Journal of System Simulation, 2010, 22(10):2273-2301(in Chinese).
[15] 应思斌. 飞机容冰飞行控制系统设计的理论与方法研究[D]. 上海:复旦大学, 2010. YING S B. Research on theory and method of aircraft ice-tolerant flight control system design[D]. Shanghai:Fudan University, 2010(in Chinese).
[16] 周莉, 徐浩军, 杨哲, 等. 飞机在结冰条件下的最优边界保护方法[J]. 上海交通大学学报, 2013, 47(8):1217-1221. ZHOU L, XU H J, YANG Z, et al. Optimal boundary protection method for aircraft under icing conditions[J]. Journal of Shanghai Jiao Tong University, 2013, 47(8):1217-1221(in Chinese).
[17] 屈亮, 李颖晖, 袁国强, 等. 基于相平面法的结冰飞机纵向非线性稳定域分析[J]. 航空学报, 2016, 37(3):865-872. QU L, LI Y H, YUAN G Q, et al. Longitudinal nonlinear stabilizing region for icing aircraft based on phase-plane method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):865-872(in Chinese).
[18] 郑无计, 李颖晖, 屈亮, 等. 基于正规形法的结冰飞机着陆阶段非线性稳定域[J]. 航空学报, 2017, 38(2):520714. ZHENG W J, LI Y H, QU L, et al. Nonlinear stability region of icing aircraft during landing phase based on normal form method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):520714(in Chinese).
[19] BRAGG M, HUTCHISON T, MERRET J. Effect of ice accretion on aircraft flight dynamics[C]//38th AIAA Aerospace Sciences Meeting & Exhibit. Reston, VA:AIAA, 2000.
[20] SONNEVELDT L. Nonlinear F-16 model description[R]. Delft:Delft University of Technology, 2010.
[21] COOK M V. Flight dynamics principles[M]. Burlington, MA:Butterworth-Heinemann, 2007:66-95.
[22] 刘世前. 现代飞机飞行动力学与控制[M]. 上海:上海交通大学出版社, 2014:145-150. LIU S Q. Flight dynamics and control of modern aircrafts[M]. Shanghai:Shanghai Jiao Tong University Press, 2014:145-150(in Chinese).
[23] HUESCHEN R M. Development of the transport class model(TCM) aircraft simulation from a sub-scale generic transport model(GTM) simulation:NASA/TM-2011-217169[R]. Washington, D. C.:NASA, 2011.
[24] HANKE C R, NORDWALL D R. The simulation of a jumbo jet transport aircraft. Volume 2:Modeling data/detail:NASA-CR-114494[R]. Washington, D. C.:NASA, 1970.
[25] NAKWAN K. Improved methods in neural network-based adaptive output feedback control, with applications to flight control[D]. Atlanta, GA:Georgia Institute of Technology, 2003.
[26] JOHNSON E, KANNAN S. Adaptive flight control for an autonomous unmanned helicopter[C]//AIAA Guidance, Navigation, & Control Conference. Reston, VA:AIAA, 2002.
Outlines

/