Fluid Mechanics and Flight Mechanics

Seakeeping performance research of large amphibious aircraft

  • HUANG Miao ,
  • CHU Lintang ,
  • LI Chenghua ,
  • JIANG Rong ,
  • TANG Binbin ,
  • WU Bin
Expand
  • 1. China Special Vehicle Research Institute, Jingmen 448035, China;
    2. Key Aviation Scientific and Technological Laboratory of High-Speed Hydrodynamic, Jingmen 448035, China;
    3. China Aviation Industry General Aircraft Co., Ltd., Zhuhai 519030, China

Received date: 2018-05-16

  Revised date: 2018-07-17

  Online published: 2018-09-19

Abstract

The design method of the hull of the huge amphibious seaplane for fire extinguishing and rescue is illustrated firstly, then the aircraft's water resistance, planning stability and motion response to rough water are investigated. The results show that the spray configuration is the main factor that affects the second hydro-resistance hump, and the precondition for the second hump is put forward. The characteristic of the trim response to different zones in the trim-speed figure is analyzed, and the stable boundary is also confirmed. By analyzing the effect of the wave length and the speed on the trim, heaving and vertical overload, the range of wave length corresponding to the strenuous exercise response of the plane on wave is confirmed.

Cite this article

HUANG Miao , CHU Lintang , LI Chenghua , JIANG Rong , TANG Binbin , WU Bin . Seakeeping performance research of large amphibious aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(1) : 522335 -522335 . DOI: 10.7527/S1000-6893.2018.22335

References

[1] 黄淼, 吴彬, 蒋荣, 等. 水上飞机在波浪上运动响应特性试验研究[J]. 实验流体力学, 2015, 29(3):41-46. HUANG M, WU B, JIANG R, et al. An experimental study about motion response of a seaplane on waves[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3):41-46(in Chinese).
[2] ELMO J M. A brief investigation of the effect of waves on the take-off resistance of a seaplane:NASA TN D-165[R]. Washington, D.C.:NASA, 1959.
[3] HOPKINS R M. A study of the effects of regular waves on the landing and take-off distance of a seaplane:AD 648848[R]. Fort Belvoir:ASTIA, 1966.
[4] GERARD F. A systematic study of the rough water performance of planning boats:AD 708694[R]. Fort Belvoir:ASTIA, 1969.
[5] GERARD F. A Systematic study of the rough-water performance of planning boats (Irregular Wave-Part Ⅱ):AD 728788[R]. Fort Belvoir:ASTIA, 1971.
[6] 朱鑫, 段文洋, 陈云赛, 等. 滑行艇规则波中迎浪运动响应的时域解[J]. 哈尔滨工程大学学报, 2013, 34(9):1094-1099. ZHU X, DUAN W Y, CHEN Y S, et al. The time domain solution to motion response of a planning craft in regular head wave[J]. Journal of Harbin Engineering University, 2013, 34(9):1094-1099(in Chinese).
[7] 朱鑫, 段文洋, 马山, 等. 棱柱型滑行艇在规则波中迎浪运动响应的频域解[J]. 哈尔滨工程大学学报, 2012, 33(11):1326-1333. ZHU X, DUAN W Y, MA S, et al. The frequency domain solution for the motion simulation of the prismatic planning craft in regular head waves[J]. Journal of Harbin Engineering University, 2012, 33(11):1326-1333(in Chinese).
[8] 王硕, 苏玉民, 庞永杰, 等. 高速速滑行艇在规则波中的纵向运动数值研究[J]. 哈尔滨工程大学学报, 2014, 35(1):45-52. WANG S, SU Y M, PANG Y J, et al. Numerical study on longitudinal motions of a high-speed planning craft in regular waves[J]. Journal of Harbin Engineering University, 2014, 35(1):45-52(in Chinese).
[9] 邹劲, 杨静雷, 蒋一, 等. 三体滑行艇在规则波中的数值预报[J]. 中国舰船研究, 2013, 8(3):12-15. ZOU J, YANG J L, JIANG Y, et al. Numerical prediction on the motion of trimaran-planing boats on regular waves[J]. Chinese Journal of Ship Research, 2013, 8(3):12-15(in Chinese).
[10] 苏玉民, 赵金鑫, 陈庆童, 等. 滑行艇在规则波中的数值模拟[J]. 船舶力学, 2013, 17(6):583-591 SU Y M, ZHAO J X, CHEN Q T, et al. Numerical simulation of the planning vessel in regular waves[J]. Journal of Ship Mechanics, 2013, 17(6):583-591(in Chinese).
[11] 唐彬彬, 吴彬, 王明振, 等. 抑波槽宽度对水陆两栖飞机喷溅性能影响对比试验研究[J]. 航空科学技术, 2015, 26(1):73-78. TANG B B, WU B, WANG M Z, et al. Comparative test study for the effect of groove type spray suppressor widths on amphibious aircraft spray performance[J]. Aeronautical Science & Technology, 2015, 26(1):73-78(in Chinese).
[12] 武庆威, 高霄鹏, 吴彬. 水上飞机滑行阶段静水阻力性能的一种估算方法[J]. 船海工程, 2013, 42(3):154-157. WU Q W, GAO X P, WU B. A method to evaluate the resistance of seaplane sliding in stil1 water[J]. Ship & Ocean Engineering, 2013, 42(3):154-157(in Chinese).
[13] 江婷, 蒋荣, 吴彬. 水上飞机纵向稳定性判别方法研究[J]. 航空计算技术, 2014, 44(6):75-77. JIANG T, JIANG R, WU B. Method of distinguish longitudinal motion stability of seaplane[J]. Aeronautical Computing Technique, 2014, 44(6):75-77(in Chinese).
[14] 黄淼, 廉滋鼎, 左仔滨, 等. 水陆两栖飞机模型水池波浪试验研究[J]. 航空科学技术, 2016, 27(1):74-78. HUANG M, LIAN Z D, ZUO Z B, et al. The study of scaled model tank tests in waves of an amphibian[J]. Aeronautical Science & Technology, 2016, 27(1):74-78(in Chinese).
[15] 黄淼, 张家旭, 李成华, 等. 水陆两栖飞机船体水动力矩特性研究[J]. 科学技术与工程, 2015, 15(36):214-218. HUANG M, ZHANG J X, LI C H, et al. The hydrodynamic moment performance study of a amphibian[J]. Science Tcchnology and Engineering, 2015, 15(36):214-218(in Chinese).
[16] 褚林塘. 水上飞机水动力设计[M]. 北京:航空工业出版社, 2014:90-92, 119-120. CHU L T. Seaplane hydrodynamic design[M]. Beijing:Aviation Industry Press, 2014:90-92, 119-120(in Chinese).
[17] CAMPBELL C, YATES, JOHN M R. Effect of length-beam on the aerodynamic characteristics of flying-boat hulls:NACA TN. 1305[R]. Washington, DC.:NACA, 1947.
[18] JOHN G L, JOHN M R. Effect of length beam ratio on the aerodynamic characteristics of flying boat hulls without wing Interference:NACA RM. L8A16[R]. Washington, D.C.:NACA, 1948.
[19] JOE W B, CHARLIE C G, HOWARD Z. Effect of length-beam ration on resistance and spray of three models of flying-boat hulls:NACA ARR.3J23[R]. Washington, D.C.:NACA, 1943.
[20] ARTHUR W C, WALTER E W, J. Effect of an increase in hull length-beam ratio from 15 to 20 on the hydrodynamic characteristics of flying boats:NACA RM L9G05[R]. Washington, D.C.:NACA, 1949.
[21] WALTER E W, PAUL W B. Effect of an increase in angle of dead rise on the hydrodynamic characteristics of a high length beam ratio hull:NACA TN 2297[R]. Washington, D.C.:NACA, 1951.
[22] WALTER J K. Effect of forebody warp and increase in afterbody length on the hydrodynamic qualities of a flying-boat hull of high length beam ratio:NACA TN 1980[R]. Washington, D.C.:NACA, 1949.
[23] 黄淼, 吴彬, 许靖锋, 等. 水陆两栖飞机船体主滑行面设计与试验研究[C]//2015年第二届中国航空科学技术大会论文集. 北京:中国航空学会, 2015:789-792. HUANG M, WU B, XU J F, et al. The design and test study on main planning hull of a amphibian[C]//2015 The Second Proceeding of China Aeronautical Science and Technology. Beijing:Chinese Society of Aeronautics and Astronaustic, 2015, 789-792(in Chinese).
[24] TOM Ⅱ. 水上飞机的流体力学[M]. 中国人民解放军总字916部队, 1963:7-8. TOM Ⅱ. Seaplane hydrodynamic[M]. People's Liberation Army troops No.916, 1963:7-8(in Chinese).
[25] 俞湘三, 陈泽梁, 楼连根, 等. 船舶性能试验技术[M]. 上海:上海交通大学出版社, 1991:38-39. YU X S, CHEN Z L, LOU L G, et al. Ship performance test technology[M]. Shanghai:Shanghai Jiaotong University Press, 1991:38-39(in Chinese).
[26] 张培红, 周乃春, 邓有奇, 等. 雷诺数对飞机气动特性的影响研究[J]. 空气动力学学报, 2012, 30(6):693-698. ZHANG P H, ZHOU N C, DENG Y Q, et al. The effects of Reynolds number on airplane aerodynamic characteristics[J]. Acta Aerodynamica Sinica, 2012, 30(6):693-698(in Chinese).
Outlines

/