The control of attitude takeover for non-cooperative spacecraft faces challenges of the unknown dynamics, spacecraft reconfiguration and non-cooperative attitude maneuvering. An attitude takeover control method based on prescribed performance control theory is presented for non-cooperative spacecraft. Firstly, a nonsingular Lagrangian model for attitude tracking is constructed. Then, using the tracking differentiator, an extended state without the information of angular velocity is proposed and an estimation-free, nonsingular, and prescribed performance controller of attitude takeover is designed, proving the boundedness of the system states and the stability of the system. Finally, two groups of numerical simulations are organized to validate the effectiveness of the proposed method and the robustness against the uncertainties of time-varying parameter and the inputs of non-cooperative attitude control.
YIN Zeyang
,
LUO Jianjun
,
WEI Caisheng
,
WANG Jiawen
. Estimation-free and prescribed performance control of attitude takeover for non-cooperative spacecraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018
, 39(11)
: 322011
-322022
.
DOI: 10.7527/S1000-6893.2018.22011
[1] 梁斌, 杜晓东, 李成, 等. 空间机器人非合作航天器在轨服务研究进展[J]. 机器人, 2012, 34(2): 242-256. LIANG B, DU X D, LI C, et al. Advances in space robot on-orbit servicing for non-cooperative spacecraft[J]. Robot, 2012, 34(2): 242-256 (in Chinese).
[2] 黄攀峰, 王明, 常海涛, 等. 空间机器人抓捕目标后姿态接管控制[J]. 航空学报, 2015, 36(9): 3165-3175. HUANG P F, WANG M, CHANG H T, et al. Attitude takeover control after capture of target by a space robot[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 3165-3175 (in Chinese).
[3] DEBUS T, DOUGHERTY S. Overview and performance of the front-end robotics enabling near-term demonstration (FREND) robotic arm[C]//AIAA Infotech Aerospace Conference. Reston, VA: AIAA, 2009: 1-12.
[4] 黄攀峰, 鲁迎波, 王明, 等. 参数未知航天器的姿态接管控制[J]. 控制与决策, 2017, 32(9): 1547-1555. HUANG P F, LU Y B, WANG M, et al. Attitude takeover control after capture of target by a space robot[J]. Control and Decision, 2017, 32(9): 1547-1555 (in Chinese).
[5] 刘厚德, 梁斌, 李成, 等. 航天器抓捕后复合体系统稳定的协调控制研究[J]. 宇航学报, 2012, 33(7): 920-929. LIU H D, LIANG B, LI C, et al. Research on coordinated control method for stabilizing a coupling system after the spacecraft is captured[J]. Journal of Astronautics, 2012, 33(7): 920-929 (in Chinese).
[6] HUANG P, WANG M, MENG Z, et al. Attitude takeover control for post-capture of target spacecraft using space robot[J]. Aerospace Science & Technology, 2016, 51: 171-180.
[7] ABIKO S, HIRZINGER G. On-line parameter adaptation for a momentum control in the post-grasping of a tumbling target with model uncertainty[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego: IEEE Industrial Electronics Society, 2007: 847-852.
[8] NGUYENHUYNH T C, SHARF I. Adaptive reactionless motion and parameter identification in postcapture of space debris[J]. Journal of Guidance, Control and Dynamics, 2013, 36(2): 404-414.
[9] 韦文书, 荆武兴, 高长生. 捕获非合作目标后航天器的自主稳定技术研究[J]. 航空学报, 2013, 34(7): 1520-1530. WEI W S, JING W X, GAO C S. Research automatic stability technology of spacecraft assembly with captured non-cooperative targets on orbit[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1520-1530 (in Chinese).
[10] HUANG P, WANG M, MENG Z, et al. Reconfigurable spacecraft attitude takeover control in post-capture of target by space manipulators[J]. Journal of the Franklin Institute, 2016, 353(9): 1985-2008.
[11] 殷泽阳, 罗建军, 魏才盛, 等. 非合作目标接近与跟踪的低复杂度预设性能控制[J]. 宇航学报, 2017, 38(8): 855-864. YIN Z Y, LUO J J, WEI C S, et al. Low-complexity prescribed performance control for approaching and tracking with a non-cooperative target[J]. Journal of Astronautics, 2017, 38(8): 855-864 (in Chinese).
[12] WANG D, HUANG P, MENG Z. Coordinated stabilization of tumbling targets using tethered space manipulators[J]. IEEE Transactions on Aerospace & Electronic Systems, 2015, 51(3): 2420-2432.
[13] YOUNES A B, MORTARI D, TURNER J D, et al. Attitude error kinematics[J]. Journal of Guidance, Control and Dynamics, 2014, 37(1): 330-335.
[14] JIA Y. Finite-time attitude tracking control for a rigid spacecraft using time-varying terminal sliding mode techniques[J]. International Journal of Control, 2015, 88(6): 1150-1162.
[15] WU T H, LEE T. Angular velocity observer on the special orthogonal group for velocity-free rigid-body attitude tracking control[C]//European Control Conference. Piscataway, NJ: IEEE Press, 2015: 1824-1829.
[16] BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9): 2090-2099.
[17] THEODORAKOPOULOS A, ROVITHAKIS G A. Low-complexity prescribed performance control of uncertain MIMO feedback linearizable systems[J]. IEEE Transactions on Automatic Control, 2016, 61(7): 1946-1952.
[18] WANG X, LIN H. Design and frequency analysis of continuous finite-time-convergent differentiator[J]. Aerospace Science and Technology, 2011, 18(1): 69-78.
[19] SONTAG E D. Mathematical control theory: deterministic finite dimensional systems[M]. Berlin: Springer-Verlag, 1998.
[20] CHEN M, GE S S, HOW B V E, et al. Robust adaptive position mooring control for marine vessels[J]. IEEE Transactions on Control Systems Technology, 2013, 21(2): 395-409.