[1] 梁斌, 杜晓东, 李成, 等. 空间机器人非合作航天器在轨服务研究进展[J]. 机器人, 2012, 34(2): 242-256. LIANG B, DU X D, LI C, et al. Advances in space robot on-orbit servicing for non-cooperative spacecraft[J]. Robot, 2012, 34(2): 242-256 (in Chinese). [2] 黄攀峰, 王明, 常海涛, 等. 空间机器人抓捕目标后姿态接管控制[J]. 航空学报, 2015, 36(9): 3165-3175. HUANG P F, WANG M, CHANG H T, et al. Attitude takeover control after capture of target by a space robot[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 3165-3175 (in Chinese). [3] DEBUS T, DOUGHERTY S. Overview and performance of the front-end robotics enabling near-term demonstration (FREND) robotic arm[C]//AIAA Infotech Aerospace Conference. Reston, VA: AIAA, 2009: 1-12. [4] 黄攀峰, 鲁迎波, 王明, 等. 参数未知航天器的姿态接管控制[J]. 控制与决策, 2017, 32(9): 1547-1555. HUANG P F, LU Y B, WANG M, et al. Attitude takeover control after capture of target by a space robot[J]. Control and Decision, 2017, 32(9): 1547-1555 (in Chinese). [5] 刘厚德, 梁斌, 李成, 等. 航天器抓捕后复合体系统稳定的协调控制研究[J]. 宇航学报, 2012, 33(7): 920-929. LIU H D, LIANG B, LI C, et al. Research on coordinated control method for stabilizing a coupling system after the spacecraft is captured[J]. Journal of Astronautics, 2012, 33(7): 920-929 (in Chinese). [6] HUANG P, WANG M, MENG Z, et al. Attitude takeover control for post-capture of target spacecraft using space robot[J]. Aerospace Science & Technology, 2016, 51: 171-180. [7] ABIKO S, HIRZINGER G. On-line parameter adaptation for a momentum control in the post-grasping of a tumbling target with model uncertainty[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego: IEEE Industrial Electronics Society, 2007: 847-852. [8] NGUYENHUYNH T C, SHARF I. Adaptive reactionless motion and parameter identification in postcapture of space debris[J]. Journal of Guidance, Control and Dynamics, 2013, 36(2): 404-414. [9] 韦文书, 荆武兴, 高长生. 捕获非合作目标后航天器的自主稳定技术研究[J]. 航空学报, 2013, 34(7): 1520-1530. WEI W S, JING W X, GAO C S. Research automatic stability technology of spacecraft assembly with captured non-cooperative targets on orbit[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1520-1530 (in Chinese). [10] HUANG P, WANG M, MENG Z, et al. Reconfigurable spacecraft attitude takeover control in post-capture of target by space manipulators[J]. Journal of the Franklin Institute, 2016, 353(9): 1985-2008. [11] 殷泽阳, 罗建军, 魏才盛, 等. 非合作目标接近与跟踪的低复杂度预设性能控制[J]. 宇航学报, 2017, 38(8): 855-864. YIN Z Y, LUO J J, WEI C S, et al. Low-complexity prescribed performance control for approaching and tracking with a non-cooperative target[J]. Journal of Astronautics, 2017, 38(8): 855-864 (in Chinese). [12] WANG D, HUANG P, MENG Z. Coordinated stabilization of tumbling targets using tethered space manipulators[J]. IEEE Transactions on Aerospace & Electronic Systems, 2015, 51(3): 2420-2432. [13] YOUNES A B, MORTARI D, TURNER J D, et al. Attitude error kinematics[J]. Journal of Guidance, Control and Dynamics, 2014, 37(1): 330-335. [14] JIA Y. Finite-time attitude tracking control for a rigid spacecraft using time-varying terminal sliding mode techniques[J]. International Journal of Control, 2015, 88(6): 1150-1162. [15] WU T H, LEE T. Angular velocity observer on the special orthogonal group for velocity-free rigid-body attitude tracking control[C]//European Control Conference. Piscataway, NJ: IEEE Press, 2015: 1824-1829. [16] BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9): 2090-2099. [17] THEODORAKOPOULOS A, ROVITHAKIS G A. Low-complexity prescribed performance control of uncertain MIMO feedback linearizable systems[J]. IEEE Transactions on Automatic Control, 2016, 61(7): 1946-1952. [18] WANG X, LIN H. Design and frequency analysis of continuous finite-time-convergent differentiator[J]. Aerospace Science and Technology, 2011, 18(1): 69-78. [19] SONTAG E D. Mathematical control theory: deterministic finite dimensional systems[M]. Berlin: Springer-Verlag, 1998. [20] CHEN M, GE S S, HOW B V E, et al. Robust adaptive position mooring control for marine vessels[J]. IEEE Transactions on Control Systems Technology, 2013, 21(2): 395-409. |