Review

Review on gas liquid shear coaxial injector in liquid rocket engine

  • KANG Zhongtao ,
  • LI Xiangdong ,
  • MAO Xiongbing ,
  • LI Qinglian
Expand
  • 1. Science and Technology on Scramjet Laboratory, Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha 410073, China

Received date: 2018-04-18

  Revised date: 2018-05-14

  Online published: 2018-06-20

Supported by

Program for New Century Excellent Talents in University(NCET-13-0156); National Natural Science Foundation of China(11472303, 11402298); National Basic Research Program of China(613239)

Abstract

The gas liquid shear coaxial injector is widely used in the bipropellant liquid rocket engine. Commonly, this type of injector consists of a jet orifice in the center and an annular aperture. The operating characteristics of the gas liquid shear coaxial injector can be divided into atomization characteristics and combustion characteristics. The atomization characteristics involves the jet breakup mechanism and the spray characteristics with the coaxial gas flow, effects of high pressure and temperature in real liquid rocket engine, effects of back pressure oscillation when combustion instability occurs, self-pulsation, etc. The combustion characteristics include the mechanism of flame stabilization, flame structure, and effects of high pressure and temperature in the real liquid rocket engine. The present study reviews the aforementioned atomization and combustion characteristics of the gas liquid shear coaxial injector to deepen the understanding of the working process of the gas liquid shear coaxial injector.

Cite this article

KANG Zhongtao , LI Xiangdong , MAO Xiongbing , LI Qinglian . Review on gas liquid shear coaxial injector in liquid rocket engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(9) : 22221 -022221 . DOI: 10.7527/S1000-6893.2018.22221

References

[1] 王振国. 液体火箭发动机燃烧过程建模与数值仿真[M]. 北京:国防工业出版社, 2012:1-15. WANG Z G. Modelling and numerical simulations of internal combustion process of liquid rocket engines[M]. Beijing:National Defense Industry Press, 2012:1-15(in Chinese).
[2] INOUE C, WATANABE T, HIMENO T, et al. Liquid jet dynamics and primary breakup characteristics at near-field of coaxial type injector:AIAA-2010-6811[R]. Reston, VA:AIAA, 2010.
[3] RAYLEIGH L. On the instability of jets[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1878, 10(1):4-13.
[4] RAYLEIGH L. Further observations upon liquid jets, in continuation of those recorded in the Royal Society's ‘Proceedings’ for March and May, 1879[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1882, 34:130-145.
[5] IBRAHIM E A. Asymmetric instability of a viscous liquid jet[J]. Journal of Colloid and Interface Science, 1997, 189(1):181-183.
[6] FUNADA T, JOSEPH D D. Viscous potential flow analysis of capillary instability[J]. International Journal of Multiphase Flow, 2002, 28(9):1459-1478.
[7] 严春吉, 解茂昭, 殷佩海. 粘性气体中粘性液体射流分裂与雾化机理研究[J]. 空气动力学学报, 2004, 22(4):422-426. YAN C J, XIE M Z, YIN P H. Mechanisms of breakup and atomization of a viscous liquid jet in a viscous gas[J]. Acta Aerodynamica Sinica, 2004, 22(4):422-426(in Chinese).
[8] 杜青, 史绍熙, 刘宁, 等. 液体燃料射流最不稳定频率的理论分析(1)--液体燃料射流的最不稳定频率及无量纲数的影响[J]. 内燃机学报, 2000, 18(3):283-287. DU Q, SHI S X, LIU N, et al. A theoretical analysis of most unstable frequency of a liquid fuel jet breakup(1)-Effects of dimensionless numbers on most unstable frequency[J]. Transactions of CSICE, 2000, 18(3):283-287(in Chinese).
[9] LIN S P, LIAN Z W. Mechanisms of the breakup of liquid jets[J]. AIAA Journal, 1990, 28(1):120-126.
[10] HARDALUPAS Y, DOMANN R. Breakup model for accelerating liquid jets:AIAA-2004-1155[R]. Reston, VA:AIAA, 2004.
[11] AMINI G, IHME M. Liquid jet instability under gravity effects:AIAA-2013-0092[R]. Reston, VA:AIAA, 2013.
[12] CHEONG B S, HOWES T. Capillary jet instability under the influence of gravity[J]. Chemical Engineering Science, 2004, 59(11):2145-2157.
[13] 严春吉. 可压缩气体中粘性液体射流分裂与雾化机理[J]. 大连理工大学学报, 2008, 48(3):339-343. YAN C J. Breakup and atomization of viscous liquid jets in a compressible gas[J]. Journal of Dalian University of Technology, 2008, 48(3):339-343(in Chinese).
[14] 严春吉. 可压缩气体中的三维粘性液体射流雾化机理[J]. 内燃机学报, 2007, 25(4):346-351. YAN C J. Atomization mechanisms of 3-D viscous liquid jets in a compressible gas[J]. Transactions of CSICE, 2007, 25(4):346-351(in Chinese).
[15] ZHOU Z W, LIN S P. Effects of compressibility on the atomization of liquid jets[J]. Journal of Propulsion and Power, 1992, 8(4):736-740.
[16] ZHOU Z W, LIN S P. Effects of compressiblity on the atomization of liquid jets:AIAA-1992-0459[R]. Reston, VA:AIAA, 1992.
[17] FUNADA T, JOSEPH D D, YAMASHITA S. Stability of a liquid jet into incompressible gases and liquids[J]. International Journal of Multiphase Flow, 2004, 30(11):1279-1310.
[18] 杜青, 王青, 郭津, 等. 加热条件下液体燃料射流破碎机理的研究[J]. 内燃机学报, 2005, 23(5):423-429. DU Q, WANG Q, GUO J, et al. Study on the mechanism of liquid jet breakup under heating conditions[J]. Transactions of CSICE, 2005, 23(5):423-429(in Chinese).
[19] 杜青, 刘宁, 张建新, 等. 液体燃料射流破碎的热不稳定性分析[J]. 燃烧科学与技术, 2005, 11(4):323-328. DU Q, LIU N, ZHANG X J, et al. Analysis of thermal instability for the breakup of liquid jets[J]. Journal of Combustion Science and Technology, 2005, 11(4):323-328(in Chinese).
[20] 杜青, 郭津, 包铁成, 等. 实际射流参数对加热条件下液体燃料射流不稳定性的影响[J]. 燃烧科学与技术, 2005, 11(5):421-426. DU Q, GUO J, BAO T C, et al. Effects of injecting parameters on the breakup of liquid jets under heating conditions[J]. Journal of Combustion Science and Technology, 2005, 11(5):421-426(in Chinese).
[21] GINEVSKⅡ A F, DMITRIEV A S. Capillary instability of liquid jets in the case of heat exchange with the surrounding medium[J]. Journal of Engineering Physics, 1991, 60(4):403-408.
[22] SAROKA M, GUO Y, ASHGRIZ N. Nonlinear instability of an evaporating capillary jet[J]. AIAA Journal, 2001, 39(9):1728-1734.
[23] ASHGRIZ N. Handbook of atomization and sprays:Theory and applications[M]. New York:Springer, 2011:3-53.
[24] BLAISOT J B, ADELINE S. Determination of the growth rate of instability of low velocity free falling jets[J]. Experiments in Fluids, 2000, 29(3):247-256.
[25] BLAISOT J B, ADELINE S. Instabilities on a free falling jet under an internal flow breakup mode regime[J]. International Journal of Multiphase Flow, 2003, 29(4):629-653.
[26] DUMOUCHEL C. On the experimental investigation on primary atomization of liquid streams[J]. Experiments in Fluids, 2008, 45(3):371-422.
[27] MAYER W O H, BRANAM R. Atomization characteristics on the surface of a round liquid jet[J]. Experiments in Fluids, 2004, 36(4):528-539.
[28] SALLAM K A, DAI Z, FAETH G M. Liquid breakup at the surface of turbulent round liquid jets in still gases[J]. International Journal of Multiphase Flow, 2002, 28(3):427-449.
[29] BELLAN J. Supercritical (and subcritical) fluid behavior and modeling:Drops, streams, shear and mixing layers, jets and sprays[J]. Progress in Energy and Combustion Science, 2000, 26(4-6):329-366.
[30] MAYER W O H, SCHIK A H A, VIELLE B, et al. Atomization and breakup of cryogenic propellants under high-pressure subcritical and supercritical conditions[J]. Journal of Propulsion and Power, 1998, 14(5):835-842.
[31] CHEHROUDI B, TALLEY D, COY E. Fractal geometry and growth rate changes of cryogenic jets near the critical point:AIAA-1999-2489[R]. Reston, VA:AIAA, 1999.
[32] CHEHROUDI B, TALLEY D. Interaction of acoustic waves with a cryogenic nitrogen jet at sub-and supercritical pressures:AIAA-2002-0342[R]. Reston, VA:AIAA, 2002.
[33] CARPENTIER J B, BAILLOT F, BLAISOT J B, et al. Behavior of cylindrical liquid jets evolving in a transverse acoustic field[J]. Physics of Fluids, 2009, 21(2):023601.
[34] BAILLOT F, BLAISOT J B, BOISDRON G, et al. Behaviour of an air-assisted jet submitted to a transverse high-frequency acoustic field[J]. Journal of Fluid Mechanics, 2009, 640:305-342.
[35] HEISTER S D, RUTZ M W, HILBING J H. Effect of acoustic perturbations on liquid jet atomization[J]. Journal of Propulsion and Power, 1997, 13(1):82-88.
[36] HEISTER S D, RUTZ M W, HILBING J H. Effect of acoustic perturbations on liquid jet atomization:AIAA-1995-2425[R]. Reston, VA:AIAA, 1995.
[37] SRINIVASAN V, SALAZAR A J, SAITO K. Modeling the disintegration of modulated liquid jets using volume-of-fluid (VOF) methodology[J]. Applied Mathematical Modelling, 2011, 35(8):3710-3730.
[38] CHIGIER N. Breakup of liquid sheets and jets:AIAA-1999-3640[R]. Reston, VA:AIAA, 1999.
[39] LIU K, SUN D J, YIN X Y. Instability of gas/liquid coaxial jet[J]. Journal of Hydrodynamics, Series B, 2007, 19(5):542-550.
[40] 胡国辉. 变密度旋拧射流的线性稳定性分析[J]. 水动力学研究与进展, 2005, 20(5):624-628. HU G H. Linear stability analysis of variable density swirling jets[J]. Journal of Hydrodynamics, Series A, 2005, 20(5):624-628(in Chinese).
[41] IBRAHIM E A, KENNY R J, WALKER N B. A computational and experimental investigation of shear coaxial jet atomization:AIAA-2006-5049[R]. Reston, VA:AIAA, 2006.
[42] FUNADA T, JOSEPH D D, SAITOH M, et al. Liquid jet in a high Mach number air stream[J]. International Journal of Multiphase Flow, 2006, 32(1):20-50.
[43] XIAO F, DIANAT M, MCGUIRK J J. LES of turbulent liquid jet primary breakup in turbulent coaxial air flow[J]. International Journal of Multiphase Flow, 2014, 60(2):103-118.
[44] GEORGE C, YANNIS H, ALEX T. A novel technique for measurements of the intact liquid jet core in a coaxial airblast atomizer:AIAA-2007-1337[R]. Reston, VA:AIAA, 2007.
[45] STEPHEN A S, STEPHEN D, MALISSA L, et al. Interpretation of core length in shear coaxial rocket injectors from X-ray radiography measurements:AIAA-2014-3790[R]. Reston, VA:AIAA, 2014.
[46] MAYER W O H. Coaxial atomization of a round liquid jet in a high speed gas stream:A phenomenological study[J]. Experiments in Fluids, 1994, 16(6):401-410.
[47] INOUE C, WATANABE T, HIMENO T, et al. Numerical and experimental study on liquid jet atomization at near-field of coaxial type injector:AIAA-2011-5925[R]. Reston, VA:AIAA, 2011.
[48] GAUTAM V, GUPTA A K. Cryogenic flow and atomization from a coaxial injector[J]. Journal of Propulsion and Power, 2009, 25(1):33-39.
[49] LIU Z H, LIU Z B. Instability of a viscoelastic liquid jet with axisymmetric and asymmetric disturbances[J]. International Journal of Multiphase Flow, 2008, 34(1):42-60.
[50] BRENN G, LIU Z, DURST F. Linear analysis of the temporal instability of axisymmetrical non-Newtonian liquid jets[J]. International Journal of Multiphase Flow, 2000, 26(10):1621-1644.
[51] YANG L J, TONG M X, FU Q F. Linear stability analysis of a three-dimensional viscoelastic liquid jet surrounded by a swirling air stream[J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 191:1-13.
[52] YANG L J, QU Y Y, FU Q F, et al. Linear stability analysis of a slightly viscoelastic liquid jet[J]. Aerospace Science and Technology, 2013, 28(1):249-256.
[53] LI F, GAÑÁN-CALVO A M, LÓPEZ-HERRERA J M, et al. Absolute and convective instability of a charged viscoelastic liquid jet[J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 196:58-69.
[54] CHANG Q, ZHANG M Z, BAI F Q, et al. Instability analysis of a power law liquid jet[J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 198:10-17.
[55] HARDALUPAS Y, WHITELAW J H. Characteristics of sprays produced by coaxial airblast atomisers[J]. Journal of Propulsion and Power, 1994, 10(4):453-460.
[56] HARDALUPAS Y, WHITELAW J H. The characteristics of spray produced by coaxial airblast atomizers:AIAA-1993-0698[R]. Reston, VA:AIAA, 1993.
[57] YANG L J, FU Q F. Stability of confined gas-liquid shear flows in recessed shear coaxial injectors[J]. Journal of Propulsion and Power, 2012, 28(6):1413-1424.
[58] LIU H F, LI W F, GONG X, et al. Effect of liquid jet diameter on performance of coaxial two-fluid airblast atomizers[J]. Chemical Engineering and Processing:Process Intensification, 2006, 45(4):240-245.
[59] HU X, ZHOU J, WANG Z, et al. Experimental studies on atomization and flux distributions of gas-liquid coaxial injectors:AIAA-1996-3023[R]. Reston, VA:AIAA, 1996.
[60] GLOGOWSKI M, MICCI M M. Shear coaxial injector spray characterization near the LOx post tip region:AIAA-1995-2552[R]. Reston, VA:AIAA, 1995.
[61] 田章福, 吴继平, 陶玉静, 等. 气液同轴式喷嘴雾化特性的试验[J]. 国防科技大学学报, 2006, 28(4):10-13. TIAN Z F, WU J P, TAO Y J, et al. Experimental study on spray characteristic of gas-liquid coaxial injectors[J]. Journal of National University of Defense Technology, 2006, 28(4):10-13(in Chinese).
[62] IM J H, KIM D, YOON Y, et al. Self-pulsation characteristics of a swirl coaxial injector with various injection and geometric conditions:AIAA-2005-3749[R]. Reston, VA:AIAA, 2005.
[63] NUNOME Y, TAMURA H, ONODERA T, et al. Effect of liquid disintegration on flow instability in a recessed region of a shear coaxial injector:AIAA-2009-5389[R]. Reston, VA:AIAA, 2009.
[64] IM J-H, KIM D, HAN P, et al. Self-pulsation characteristics of a gas-liquid swirl coaxial injector[J]. Atomization and Sprays, 2009, 19(1):57-74.
[65] IM J-H, YOON Y. The effects of the ambient pressure on self-pulsation characteristics of a gas/liquid swirl coaxial injector:AIAA-2008-4850[R]. Reston, VA:AIAA, 2008.
[66] TSOHAS J, HEISTER S D. Numerical simulations of liquid rocket coaxial injector hydrodynamics[J]. Journal of Propulsion and Power, 2011, 27(4):793-810.
[67] TSOHAS J, CANINO J V, HEISTER S D. Computational modeling of rocket injector internal flows:AIAA-2007-5571[R]. Reston, VA:AIAA, 2007.
[68] TSOHAS J, HEISTER S. CFD simulations of liquid rocket coaxial injector hydrodynamics:AIAA-2009-5387[R]. Reston, VA:AIAA, 2009.
[69] TSOHAS J. Hydrodynamics of shear coaxial liquid rocket injectors[D]. West Lafayette, IN:Purdue University, 2009:1-26, 69-89.
[70] NUNOME Y, SAKAMOTO H, TAMURA H, et al. An experimental study of super-pulsating flow on a shear coaxial injector with a recessed inner post:AIAA-2007-5560[R]. Reston, VA:AIAA, 2007.
[71] KIM B-D, HEISTER S D, COLLICOTT S H. Three-dimensional flow simulations in the recessed region of a coaxial injector[J]. Journal of Propulsion and Power, 2005, 21(4):728-742.
[72] KIM B-D, HEISTER S D. Two-phase modeling and hydrodynamic instabilities study of shear coaxial injector flow:AIAA-2002-3696[R]. Reston, VA:AIAA, 2002.
[73] KIM B-D, HEISTER S D. Two-phase modeling and hydrodynamic instability in coaxial injectors[J]. Journal of Propulsion and Power, 2004, 20(3):468-479.
[74] KIM B-D, HEISTER S. Effect of chamber pressure variation on high-frequency hydrodynamic instability of shear coaxial injector:AIAA-2004-3522[R]. Reston, VA:AIAA, 2004.
[75] KIM B-D. Study of hydrodynamic instability of shear coaxial injector flow in a recessed region[D]. West Lafayette, IN:Purdue University, 2002:26-138.
[76] MAYER W, TAMURA H. Propellant injection in a liquid oxygen/gaseous hydrogen rocket engine[J]. Journal of Propulsion and Power, 1996, 12(6):1137-1147.
[77] LIU T, ZONG N, YANG V. Dynamics of shear-coaxial cryogenic nitrogen jets with acoustic excitation under supercritical conditions:AIAA-2006-0759[R]. Reston, VA:AIAA, 2006.
[78] JEFFREY G, IVETT L, JUAN R, et al., On the effect of a transverse acoustic field on a flush shear coaxial injector:AIAA-2009-5142[R]. Reston, VA:AIAA, 2009.
[79] CHEHROUDI B, DAVIS D, TALLEY D. Coaxial injection under supercritical conditions:AIAA-2003-1339[R]. Reston, VA:AIAA, 2003.
[80] DAVIS D, CHEHROUDI B. The effects of pressure and acoustic field on a cryogenic coaxial jet:AIAA-2004-1330[R]. Reston, VA:AIAA, 2004.
[81] DAVIS D, CHEHROUDI B, SORENSON I. Measurements in an acoustically driven coaxial jet under supercritical conditions:AIAA-2005-0736[R]. Reston, VA:AIAA, 2005.
[82] DAVIS D, CHEHROUDI B. Shear-coaxial jets from a rocket-like injector in a transverse acoustic field at high pressures:AIAA-2006-0758[R]. Reston, VA:AIAA, 2006.
[83] RODRIGUEZ J, GRAHAM J, LEYVA I, et al. Effect of variable phase transverse acoustic fields on coaxial jet forced spread angles:AIAA-2009-0231[R]. Reston, VA:AIAA, 2009.
[84] RICHECOEUR F, SCOUFLAIRE P, DUCRUIX S, et al. Interactions between propellant jets and acoustic modes in liquid rocket engines:Experiments and simulations:AIAA-2006-4397[R]. Reston, VA:AIAA, 2006.
[85] HARDI J S, MARTINEZ H C G, OSCHWALD M, et al. LOx jet atomization under transverse acoustic oscillations[J]. Journal of Propulsion and Power, 2014, 30(2):337-349.
[86] MÉRY Y, HAKIM L, SCOUFLAIRE P,et al. Experimental investigation of cryogenic flame dynamics under transverse acoustic modulations[J]. Comptes Rendus Mécanique, 2013, 341(1-2):100-109.
[87] TESHOME S, LEYVA I A, TALLEY D, et al. Cryogenic high-pressure shear-coaxial jets exposed to transverse acoustic forcing:AIAA-2012-1265[R]. Reston, VA:AIAA, 2012.
[88] RODRIGUEZ J I, LEYVA I A, GRAHAM J J, et al. Mixing enhancement of liquid rocket engine injector flow:AIAA-2009-5143[R]. Reston, VA:AIAA, 2009.
[89] JUNIPER M, TRIPATHI A, SCOUFLAIRE P, et al. Structure of cryogenic flames at elevated pressures[C]//Proceedings of the Combustion Institute. Pittsburgh, PA:The Combustion Institute, 2000:1103-1109.
[90] SINGLA G, SCOUFLAIRE P, ROLON C, et al. Planar laser-induced fluorescence of OH in high-pressure cryogenic LOx/GH2 jet flames[J]. Combustion and Flame, 2006, 144(1-2):151-169.
[91] HERDING G, SNYDER R, SCOUFLAIRE P, et al. Flame stabilization in cryogenic propellant combustion[C]//26ht Symposium (International) on Combustion. Pittsburgh, PA:The Combustion Institute, 1996:2041-2047.
[92] SINGLA G, SCOUFLAIRE P, ROLON J C, et al. Flame stabilization in high pressure LOx/GH2 and GCH4 combustion[C]//Proceedings of the Combustion Institute. Pittsburgh, PA:The Combustion Institute, 2007:2215-2222.
[93] VAIDYANATHAN A, GUSTAVSSON J P, SEGAL C. Oxygen/hydrogen-planar-laser-induced fluorescence measurements and accuracy investigation in high-pressure combustion[J]. Journal of Propulsion and Power, 2009, 25(4):864-874.
[94] KAWASHIMA H, KOBAYASHI K, TOMITA T, et al. A combustion instability phenomenon on a LOx/methane subscale combustor:AIAA-2010-7082[R]. Reston, VA:AIAA, 2010.
[95] KENDRICK D, HERDING G, SCOUFLAIRE P, et al. Effects of a recess on cryogenic flame stabilization[J]. Combustion and Flame, 1999, 118(3):327-339.
[96] KENDRICK D, HERDING G, SCOUFLAIRE P, et al. Effet du retrait sur la stabilisation des flammes cryotechniques[J]. Comptes Rendus de I'Académie des Sciences-Series ⅡB-Mechanics-Physics-Chemistry-Astronomy, 1998, 326(2):111-116.
[97] LUX J, HAIDN O. Effect of recess in high-pressure liquid oxygen/methane coaxial injection and combustion[J]. Journal of Propulsion and Power, 2009, 25(1):24-33.
[98] NUNOME Y, ONODERA T, SASAKI M, et al. Combustion instability phenomena observed during cryogenic hydrogen injection temperature ramping tests for single coaxial injector elements:AIAA-2011-6027[R]. Reston, VA:AIAA, 2011.
[99] SINGLA G, SCOUFLAIRE P, ROLON C, et al. Transcritical oxygen/transcritical or supercritical methane combustion[C]//Proceedings of the Combustion Institute. Pittsburgh, PA:The Combustion Institute, 2005:2921-2928.
[100] LOCKE J M, PAL S, WOODWARD R D, et al. High speed visualization of LOx/GH2 rocket injector flowfield:Hot-fire and cold-flow experiments:AIAA-2010-7145[R]. Reston, VA:AIAA, 2010.
[101] NICOLA I, ALESSANDRO C, CLAUDIO B. Mixing and combustion in supercritical O2/CH4 liquid rocket injectors:AIAA-2004-1163[R]. Reston, VA:AIAA, 2004.
[102] DE GIORGI M G, LEUZZI A. CFD simulation of mixing and combustion in LOx/CH4 spray under supercritical conditions:AIAA-2009-4038[R]. Reston, VA:AIAA, 2009.
[103] MATSUYAMA S, SHINJO J, OGAWA S, et al. Large eddy simulation of LOx/GH2 shear-coaxial jet flame at supercritical pressure:AIAA-2010-0208[R]. Reston, VA:AIAA, 2010.
[104] MATSUYAMA S, SHINJO J, OGAWA S, et al. Large eddy simulation of high-frequency combustion instability of supercritical LOx/GH2 flame:AIAA-2010-6567[R]. Reston, VA:AIAA, 2010.
[105] ZONG N, YANG V. Supercritical LOx/methane flame stabilization and dynamics of a shear coaxial injector:AIAA-2006-0760[R]. Reston, VA:AIAA, 2006.
[106] ZONG N, GUILLAUME R, YANG V. A flamelet approach for modeling of (LOx)/methane flames at supercritical pressures:AIAA-2008-0946[R]. Reston, VA:AIAA, 2008.
[107] RUIZ A, CUENOT B, SELLE L, et al. The flame structure of a turbulent supercritical hydrogen/oxygen flow behind a splitter plate:AIAA-2011-6121[R]. Reston, VA:AIAA, 2011.
[108] OEFELEIN J C. Thermophysical characteristics of shear-coaxial LOx-H2 flames at supercritical pressure[C]//Proceedings of the Combustion Institute. Pittsburgh, PA:The Combustion Institute, 2005:2929-2937.
[109] FENG S J, NIE W S, HE B, et al. Three-dimensional numerical simulations of low frequency combustion instability in a LOx/methane rocket engine:AIAA-2010-8776[R]. Reston, VA:AIAA, 2010.
[110] 袁磊. 氢/氧发动机变工况燃烧特性及其燃烧稳定性研究[D]. 长沙:国防科技大学, 2013:61-85. YUAN L. Research on changing operation combustion characteristics and combustion stabilities of hydrogen/oxygen engine[D]. Changsha:National University of Defense Technology, 2013:61-85(in Chinese).
[111] MATSUYAMA S, SHINJO J, MIZOBUCHI Y. LES of high-frequency combustion instability in a rocket combustor:AIAA-2013-0564[R]. Reston, VA:AIAA, 2013.
[112] MATSUYAMA S, SHINJO J, OGAWA S, et al. LES of high-frequency combustion instability in a single element rocket combustor:AIAA-2012-1271[R]. Reston, VA:AIAA, 2012.
[113] RICHMAN B M. On the method of combustion instability mode determination in a sylindrical chamber and usage with experimental data[D]. Huntsville, AL:The University of Alabama, 2011:31-32.
[114] YI T, SANTAVICCA D A. Forced flame response of turbulent liquid-fueled lean-direct-injection combustion to fuel modulations[J]. Journal of Propulsion and Power, 2009, 25(6):1259-1271.
[115] BIRBAUD A L, DUROX D, CANDEL S. Upstream flow dynamics of a laminar premixed conical flame submitted to acoustic modulations[J]. Combustion and Flame, 2006, 146(3):541-552.
[116] DUROX D, SCHULLER T, CANDEL S. Combustion dynamics of inverted conical flames[C]//Proceedings of the Combustion Institute. Pittsburgh, PA:The Combustion Institute, 2005:1717-1724.
[117] CHAUDHURI S, CETEGEN B M. Response dynamics of bluff-body stabilized conical premixed turbulent flames with spatial mixture gradients[J]. Combustion and Flame, 2009, 156(3):706-720.
[118] CHAUDHURI S, CETEGEN B M. Blowoff characteristics of bluff-body stabilized conical premixed flames with upstream spatial mixture gradients and velocity oscillations[J]. Combustion and Flame, 2008, 153(4):616-633.
[119] BIRBAUD A L, DUROX D, DUCRUIX S, et al. Dynamics of confined premixed flames submitted to upstream acoustic modulations[C]//Proceedings of the Combustion Institute. Pittsburgh, PA:The Combustion Institute, 2007:1257-1265.
[120] CHAPARRO A A, CETEGEN B M. Blowoff characteristics of bluff-body stabilized conical premixed flames under upstream velocity modulation[J]. Combustion and Flame, 2006, 144(1-2):318-335.
[121] PALIES P, DUROX D, SCHULLER T, et al. Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames[J]. Combustion and Flame, 2011, 158(10):1980-1991.
[122] PALIES P, DUROX D, SCHULLER T, et al. The combined dynamics of swirler and turbulent premixed swirling flames[J]. Combustion and Flame, 2010, 157(9):1698-1717.
[123] PALIES P, DUROX D, SCHULLER T, et al. Dynamics of premixed confined swirling flames[J]. Comptes Rendus Mécanique, 2009, 337(6-7):395-405.
[124] THUMULURU S K, LIEUWEN T. Characterization of acoustically forced swirl flame dynamics[C]//Proceedings of the Combustion Institute. Pittsburgh, PA:The Combustion Institute, 2009:2893-2900.
[125] HARDI J S, SCOTT B, MICHAEL O, et al. Coupling behaviour of LOx/H2 flames to longitudinal and transverse acoustic instabilities:AIAA-2012-4087[R]. Reston, VA:AIAA, 2012.
[126] LI Q, CHENG P, KANG Z, et al. Extreme fuel-rich combustion characteristics of RBCC embedded rocket engine with gas-liquid shear coaxial injectors in continuously varying mixture ratios[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(4):736-746.
[127] RICHECOEUR F. Experimentations and simulations numeric on interaction modes acoustic transve at flames cryotechniques[D]. Paris:Ecole Centrale Paris, 2006:68-95.
[128] RICHECOEUR F, DUCRUIX S, SCOUFLAIRE P, et al. Experimental investigation of high-frequency combustion instabilities in liquid rocket engine[J]. Acta Astronautica, 2008, 62(1):18-27.
[129] RICHECOEUR F, DUCRUIX S, SCOUFLAIRE P, et al. Effect of temperature fluctuations on high frequency acoustic coupling[C]//Proceedings of the Combustion Institute. Pittsburgh, PA:The Combustion Institute, 2009:1663-1670.
[130] DAVID J F, ALIREZA B, JEFFREY W, et al. The response of cryogenic H2/O2 coaxial jet flames to acoustic disturbances:AIAA-2015-1607[R]. Reston, VA:AIAA, 2015.
Outlines

/