Relative navigation of the non-cooperative space target is a key technology for the missions such as on-orbit servicing and close-range surveillance. Recent research shows that a weak observation exists along the range direction when the line-of-sight angle is used as the measurement information for medium range relative navigation, and double line-of-sight relative navigation is an effective solution to this problem. This paper studies an autonomous double line-of-sight measurement relative navigation method based on the formation of dual chase spacecraft. The overall architecture and detailed algorithms for the double line-of-sight measurement relative navigation method are introduced. Based on the geometric configuration among the dual chase spacecraft and the target, the propagation equation for the errors in the double line-of-sight measurement method is developed and its in-fluencing factors are analyzed. The configuration of the dual chaser formation and its influence on the performance of the method is also discussed. Numerical simulations verifies the relevant conclusions obtained.
WANG Kai
,
XU Shijie
,
LI Kang
,
TANG Liang
. Error analysis and formation design for double line-of-sight measuring relative navigation method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018
, 39(9)
: 322014
-322028
.
DOI: 10.7527/S1000-6893.2018.22014
[1] WOFFINDEN D C. Angles-only navigation for autonomous orbital rendezvous[D]. Logan, UT:Utah State University, 2008.
[2] WOFFINDEN D C, GELLER D K. Navigating the road to autonomous orbital rendezvous[J]. Journal of Spacecraft and Rockets, 2007, 44(4):898-909.
[3] CHARI R J V. Autonomous orbital rendezvous using angles-only navigation[D]. Cabridge, MA:Massachusetts Institute of Technology, 2001.
[4] GELLER D K, KLEIN I. Angles-only navigation state observability during orbital proximity operations[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6):1976-1983.
[5] 尤岳, 王华, CHRISTOPHE P, 等. 基于SRUKF的偏心仅测角相对导航方法[J]. 宇航学报, 2016, 37(11):1312-1322. YOU Y, WANG H, CHRISTOPHE P, et al. Square root unscented Kalman filter-based angles-only relative navigation using camera offset[J]. Journal of Astronautics, 2016, 37(11):1312-1322(in Chinese).
[6] GELLER D K, PEREZ A. Initial relative orbit determination for close-in proximity operations[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(9):1833-1841.
[7] GONG B C, GELLER D K, LUO J J. Initial relative orbit determination analytical covariance and performance analysis for proximity operations[J]. Journal of Spacecraft and Rockets, 2016, 53(5):822-835.
[8] 刘涛, 解永春.非合作目标交会相对导航方法研究[J]. 航天控制, 2006, 24(2):48-53. LIU T, XIE Y C. A Study on relative navigation for spacecraft rendezvous with a noncooperative target[J]. Aerospace Control, 2006, 24(2):48-53(in Chinese).
[9] WOFFINDEN D C, GELLER D K. Optimal orbital rendezvous maneuvering for angles-only navigation[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4):1382-1387.
[10] GRZYMISCH J, FICHTER W. Observability criteria and unobservable maneuvers for in-orbit bearings-only navigation[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(4):1250-1259.
[11] 龚柏春, 罗建军, 袁建平, 等.基于可观测性分析的单测角相对导航与闭环制导技术[J]. 航空学报, 2015, 36(7):2411-2419. GONG B C, LUO J J, YUAN J P, et al. Angles-only relative navigation integrated with close-loop guidance technology based on observability analysis[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2411-2419(in Chinese).
[12] 杨海燕, 汤国建. 双目视觉导航信息的可观测性分析[J]. 宇航学报, 2013, 34(2):207-213. YANG H Y, TANG G J. Observability analysis of binocular vision navigation information[J]. Journal of Astronautics, 2013, 34(2):207-213(in Chinese).
[13] SEGAL S, CARMI A, GURFIL P. Stereovision-based estimation of relative dynamics between noncooperative satellites:Theory and experiments[J]. IEEE Transactions on Control Systems Technology, 2014, 22(2):568-584.
[14] CHEN T, XU S J. Double line-of-sight measuring relative navigation for spacecraft autonomous rendezvous[J]. Acta Astronautica, 2010, 67(1-2):122-134.
[15] 王楷, 陈统, 徐世杰. 基于双视线测量的相对导航方法[J]. 航空学报, 2011, 32(6):1084-1091. WANG K, CHEN T, XU S J. A method of double line-of-sight measurement relative navigation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):1084-1091(in Chinese).
[16] 翟光, 张景瑞, 张尧. 基于多空间机器人系统的非合作目标联合定位技术[J]. 机器人, 2013, 35(2):249-256. ZHAI G, ZHANG J R, ZHANG Y. Co-localization of non-cooperative targets based on multiple space robot system[J]. Robot, 2013, 35(2):249-256(in Chinese).
[17] 高学海, 梁斌, 潘乐, 等. 高轨非合作目标多视线分布式相对导航方法[J]. 宇航学报, 2015, 36(3):292-299. GAO X H, LIANG B, PAN L, et al. Distributed relative navigation of GEO non-cooperative target based on multiple line-of-sight measurements[J]. Journal of Astronautics, 2015, 36(3):292-299(in Chinese).
[18] CHEN T, XU S J. Approach guidance with double-line-of-sight-measuring navigation constraint for autonomous rendezvous[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(3):678-687.
[19] 梁斌, 高学海, 潘乐, 等. 编队接近非合作目标PSO多脉冲制导方法[J]. 哈尔滨工业大学学报, 2015, 47(10):7-12. LIANG B, GAO X H, PAN L, et al. Formation proximity of GEO non-cooperative target based on PSO multiple impulses guidance law[J]. Journal of Harbin Institute of Technology, 2015, 47(10):7-12(in Chinese).
[20] CRASSIDIS J L, MARKLEY F L, CHENG Y. Survey of nonlinear attitude estimation methods[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(1):12-28.