Fluid Mechanics and Flight Mechanics

Multi-propeller/wing coupled aerodynamic design at low Reynolds number

  • WANG Kelei ,
  • ZHOU Zhou ,
  • ZHU Xiaoping ,
  • XU Xiaoping
Expand
  • 1. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Laboratory of Science and Technology on UAV, Northwestern Polytechnical University, Xi'an 710065, China

Received date: 2017-12-06

  Revised date: 2018-03-14

  Online published: 2018-03-14

Supported by

Civil Aircraft Special Project (MJ-2015-F-009)

Abstract

Based on the research of near-space solar-powered unmanned aerial vehicles, the multi-propeller/wing integrated aerodynamic design at high altitude and low Reynolds number is studied. With the analyses of both aerodynamic per-formance and flow characteristics of the typical multi-propeller/wing configuration, a concept for the low Reynolds number multi-propeller/wing coupled aerodynamic design is proposed, which is based on the construction of ideal near-wall flow distribution under multi-propeller-induced effects. And then, the multi-propeller parameters, the sectional airfoil within low Reynolds number regions, and the wing section within higher Reynolds number regions are optimized and studied in sequence. Lastly, both the reliability and efficiency of the proposed multi-propeller/wing coupled aerodynamic design concept are studied by analyzing the optimized results. It shows that the aerodynamic performance of the configuration designed based on the proposed concept is significantly improved when compared with the conventional designed based on optimization of the airfoil at the low Reynolds number. The wing designed based on the proposed coupled processes has a relative drag reduction of 8.8% and a relative lift-to-drag ratio increment of 12.1%, and nearly 64.5% adverse effects induced by the multi-propeller slipstream can be eliminated.

Cite this article

WANG Kelei , ZHOU Zhou , ZHU Xiaoping , XU Xiaoping . Multi-propeller/wing coupled aerodynamic design at low Reynolds number[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(8) : 121918 -121918 . DOI: 10.7527/S1000-6893.2018.21918

References

[1] ROMEO G, FRULLA G. HELIPLAT:Aerodynamic and structural analysis of HAVE solar powered platform[C]//AIAA's 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles. Reston, VA:AIAA, 2002.
[2] 王艳奎. 临近空间飞行器应用前景及发展分析[J]. 国防科技, 2009, 30(2):20-24. WANG Y K. An analysis on application prospects and development of near-space vehicles[J]. National Defense Science & Technology, 2009, 30(2):20-24(in Chinese).
[3] 王亚飞, 安永旺, 杨继何. 临近空间飞行器的现状及发展趋势[J]. 国防技术基础, 2010(1):33-37. WANG Y F, AN Y W, YANG J H. Current situations and trends of near-space vehicles[J]. Technology Foundation of National Defence, 2010(1):33-37(in Chinese).
[4] DRELA M. Low-reynolds-number airfoil design for the M.I.T. Daedalus prototype:A case study[J]. Journal of Aircraft, 1988, 25(8):724-732.
[5] SELIG M S, GUGLIELMO J J. High-lift low Reynolds number airfoil design[J]. Journal of Aircraft, 1997, 34(1):72-79.
[6] 张维智, 贺德馨, 张兆顺. 低雷诺数高升力翼型的设计和实验研究[J]. 空气动力学学报, 1998, 16(3):363-367. ZHANG W Z, HE D X, ZHANG Z S. The design and experiment study for a high-lift airfoil at low Reynolds numbers[J]. Acta Aerodynamica Sinica, 1998, 16(3):363-367(in Chinese).
[7] 邓磊, 乔志德, 杨旭东, 等. 高升阻比自然层流翼型多点/多目标优化设计[J]. 空气动力学学报, 2011, 29(3):330-335. DENG L, QIAO Z D, YANG X D, et al. Multi-point/objective optimization design of high lift-to-drag ratio for NLF airfoils[J]. Acta Aerodynamica Sinica, 2011, 29(3):330-335(in Chinese).
[8] 甘文彪, 周洲, 许晓平. 高仿生全翼式太阳能无人机分层协同设计及分析[J]. 航空学报, 2016, 37(1):163-178. GAN W B, ZHOU Z, XU X P. Multilevel collaboration design and analysis of bionic full-wing typical solar-powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):163-178(in Chinese).
[9] 甘文彪, 周洲, 许晓平. 高仿生全翼式太阳能无人机气动数值模拟[J]. 航空学报, 2015, 36(10):3284-3294. GAN W B, ZHOU Z, XU X P. Aerodynamic numerical simulation of bionic full-wing typical solar-powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3284-3294(in Chinese).
[10] KROO I. Propeller-wing integration for minimum induced loss[J]. Journal of Aircraft, 1986, 23(7):561-565.
[11] VELDHUIS L L M, HEYMA P M. Aerodynamic optimization of wings in multi-engined tractor propeller arrangements[J]. Aircraft Design, 2000, 3(3):129-149.
[12] RAKSHITH B R, DESHPANDE S M, RODDAM N, et al. Optimal low-drag wing planforms for tractor-configuration propeller-driven aircraft[J]. Journal of Aircraft, 2015, 52(6):1-11.
[13] 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计研究[J]. 航空学报, 2014, 35(11):2910-2920. XU J K, BAI J Q, HUANG J T, et.al. Aerodynamic optimization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2910-2920(in Chinese).
[14] 王科雷, 周洲, 祝小平. 耦合多螺旋桨气动影响的低雷诺数机翼设计[J]. 航空学报, 2017, 38(6):120813. WANG K L, ZHOU Z, ZHU X P. Aerodynamic design of low-Reynolds-number wing coupled with multiple propellers induced effects[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):120813(in Chinese).
[15] WALTERS D K, COKLJAT D. A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flows[J]. Journal of Fluids Engineering, 2008, 130(1):1-14.
[16] VOLINO R J. A new model for free-stream turbulence effects on boundary layers[J]. Journal of Turbomachinery, 1998, 120:613-620.
[17] 陈广强, 白鹏, 詹慧玲, 等. 高空长航时无人机螺旋桨滑流效应影响研究[J]. 飞机设计, 2014, 34(4):1-9. CHEN G Q, BAI P, ZHAN H L, et al. Numerical simulation study on propeller slipstream effect on high altitude long endurance unmanned air vehicle (HALE UAV)[J]. Aircraft Design, 2014, 34(4):1-9(in Chinese).
[18] 陈广强, 白鹏, 詹慧玲, 等. 一种推进式螺旋桨无人机滑流效应影响研究[J]. 空气动力学学报, 2015, 33(4):554-562. CHEN G Q, BAI P, ZHAN H L, et.al. Numerical simulation study on propeller slipstream effect on unmanned air vehicle with propeller engine[J]. Acta Aerodynamica Sinica, 2015, 33(4):554-562(in Chinese).
[19] HSIAO F B, LIU C F, TANG Z. Experimental studies of airfoil performance and flow structures on a low Reynolds number airfoil[C]//19th AIAA, Fluid Dynamics, Plasma Dynamics, and Lasers Conference. Reston, VA:AIAA,1987.
[20] CARADONNA F X, TUNG C. Experimental and analytical studies of a model helicopter rotor in hover:NASA TM 81232[R]. Washington, D.C.:NASA, 1981.
[21] PIOTR D, OSKAR S. Numerical simulation of model helicopter rotor in hover[J]. Task Quarterly, 2008, 3:227-236.
[22] 王科雷, 祝小平, 周洲, 等. 低雷诺数分布式螺旋桨滑流气动影响研究[J]. 航空学报, 2016, 37(9):2669-2678. WANG K L, ZHU X P, ZHOU Z, et al. Distributed electric propulsion slipstream aerodynamic effects at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2669-2678(in Chinese).
[23] MUKESH R, LINGADURAI K, KARTHICK S. Aerodynamic optimization using proficient optimization algorithms[C]//2012 IEEE International Conference on Computing, Communication and Applications (ICCCA). Piscataway, NJ:IEEE Press, 2012:1-5.
[24] 刘丽娜, 吴国新. 基于Hicks-Henne型函数的翼型参数化设计以及收敛特性研究[J]. 科学技术与工程, 2014, 14(30):151-155. LIU L N, WU G X. Research on application of Hicks-Henne function in airfoil shape parameterization & convergence[J]. Science Technology and Engineering, 2014, 14(30):151-155(in Chinese).
[25] 孙美建, 詹浩. Kriging模型在机翼气动外形优化中的应用[J]. 空气动力学学报, 2011, 29(6):759-764. SUN M J, ZHAN H. Application of Kriging surrogate model for aerodynamic shape optimization of wing[J]. Acta Aerodynamica Sinica, 2011, 29(6):759-764(in Chinese).
[26] SACKS J, WELCH W J, MICHELL T L, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4):409-435.
Outlines

/