Solid Mechanics and Vehicle Conceptual Design

High temperature thermal insulation performance of light nanomaterials for aerospace craft

  • WU Dafang ,
  • REN Haoyuan ,
  • WANG Feng ,
  • WANG Huaitao
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China

Received date: 2017-07-31

  Revised date: 2018-01-16

  Online published: 2018-01-16

Supported by

National Natural Science Foundation of China (11427802)

Abstract

The thermal insulation nanomaterial is a new thermal protection material with excellent thermal insulation performance for aerospace craft. Using the self-developed transient heating simulation system designed for high-speed aircraft, the high-temperature insulation performance of the Al2O3 nanomaterial is investigated with the experimental method and numerical simulation to provide important references for the thermal protection design of aerospace craft. The results show that for the Al2O3 nanomaterial plate with thickness of only 10 mm, when the front surface temperature was 1 200 ℃ (1 800 s), the temperature difference between the front and back surfaces was 880.9 ℃, the back surface temperature reduced by 73.4%, and the thermal insulation performance was stable. A comparison between the nanomaterial plate with the lightweight ceramic plate of a space vehicle shows that the temperature on the back surface of the ceramic plate was 56% higher than that of the nanomaterial plate. These results indicate that the Al2O3 nanomaterial has excellent thermal insulation performance, and is thus applicable in thermal protection of spacecraft and hypersonic vehicle. When the temperature was over 1 200 ℃, it was observed by Scanning Electron Microscope (SEM) that Al2O3 nanometric particles accreted rapidly, and the size of the cavities between particles increase significantly. The fibers inside the material were found melt, and the number, depth and width of cracks on the surface of the plate increased observably. These affected the thermal conductivity of the material surface. In addition, when the temperature was higher than 1 200 ℃, large deformation due to shrinkage and bending appeared on the edges of the nanomaterial plate. Experimental results demonstrate that the Al2O3 nanomaterial should be used at the temperature lower than 1 200 ℃.

Cite this article

WU Dafang , REN Haoyuan , WANG Feng , WANG Huaitao . High temperature thermal insulation performance of light nanomaterials for aerospace craft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(4) : 221636 -221636 . DOI: 10.7527/S1000-6893.2017.21636

References

[1] XIE G N, ZHANG R P, MANCA O. Thermal and thermomechanical performances of pyramidal core sandwich panels under aerodynamic heating[J]. Journal of Thermal Science and Engineering Applications, 2017, 9(1):014503.
[2] CHENG H M, XUE H F, HONG C Q, et al. Preparation, mechanical, thermal and ablative properties of lightweight needled carbon fibre felt/phenolic resin aerogel composite with a bird's nest structure[J].Composites Science and Technology, 2017, 140:63-72.
[3] XU Y H, HU X, YANG Y X, et al. Dynamic simulation of insulation material ablation process in solid propellant rocket motor[J]. Journal of Aerospace Engineering, 2015, 28(5):04014118.
[4] CARTA D, CORRIAS A, MOUNTJOY G, et al. Structural study of high porous nanocomposite aerogels[J]. Journal of Non-Crystalline Solids, 2007, 353:1785-1788.
[5] BAILLIS D, COQUARD R, MOURA L M. Heat transfer in cellulose-based aerogels:Analytical modelling and measurements[J]. Energy, 2015, 84:732-744.
[6] 胡子君, 李俊宁, 孙陈诚, 等.纳米超级隔热材料及其最新研究进展[J]. 中国材料进展, 2012, 31(8):25-31. HU Z J, LI J N, SUN C C, et al. Recent developments of nano-superinsulating materials[J]. Materials China, 2012, 31(8):25-31(in Chinese).
[7] FRICKE J, EMMERLING A. Aerogels-recent progress in production technique and novel applications[J]. Journal of Sol-Gel Science and Technology, 1998, 13(1-3):299-303.
[8] YUE C W, FENG J, FENG J Z, et al. Efficient gaseous thermal insulation aerogels from 2-dimension nitrogen-doped graphene sheets[J]. International Journal of Heat and Mass Transfer, 2017, 109:1026-1030.
[9] LIU H, XIA X L, AI Q, et al. Experimental investigations on temperature-dependent effective thermal conductivity of nanoporous silica earogel composite[J]. Experimental Thermal and Fluid Science, 2017, 84:67-77.
[10] HOSEINI A, MCCAGUE C, ANDISHEH-TADBIR M, et al. Aerogel blankets:From mathematical modeling to material characterization and experimental analysis[J]. International Journal of Heat and Mass Transfer, 2016, 93:1124-1131.
[11] HURWITZ F I, GALLAGHER M, OLIN T C, et al. Optimization of alumina and aluminosilicate aerogel structure for high-temperature performance[J]. International Journal of Applied Glass Science, 2014, 5(3):276-286.
[12] BI C, TANG G H, HU Z J. Heat conduction modeling in 3-D ordered structures for prediction of aerogel thermal conductivity[J]. International Journal of Heat and Mass Transfer, 2014, 73:103-109.
[13] BAILLIS D, COQUARD R, MOURA L M. Heat transfer in cellulose-based aerogels:Analytical modelling and measurements[J]. Energy, 2015, 84:732-744.
[14] 杨景兴, 何凤梅, 于帆, 等. SiO2气凝胶热参数测试及评价[J]. 宇航材料工艺, 2013(2):92-94. YANG J X, HE F M, YU F, et al. Measurement and estimate of thermophysical parameters of SiO2 aerogel[J]. Aerospace Materials and Technology, 2013(2):92-94(in Chinese).
[15] 周祥发, 冯坚, 肖汉宁, 等. 二氧化硅气凝胶隔热复合材料的性能及其瞬态传热模拟[J]. 国防科技大学学报, 2009, 31(2):36-40. ZHOU X F, FENG J, XIAO H N, et al. Performance and heat transfer simulation of silica aerogel composites[J]. Journal of National University of Defense of Technology, 2009, 31(2):36-40(in Chinese).
[16] 李翔, 傅波. 高超声速飞行器复杂结构热试验技术[J]. 航空学报, 2016, 37(S1):S73-S79. LI X, FU B. Thermal test technique of complex structure of hypersonic aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):S73-S79(in Chinese).
[17] SWANSON A D, COGHLAN S C, PRATT D M, et al. Hypersonic vehicle thermal structure test challenges:AIAA-2007-1670[R]. Reston, VA:AIAA, 2007.
[18] 谭光辉, 李秋彦, 邓俊. 热环境下结构固有振动特性试验及分析[J]. 航空学报, 2016, 37(S1):S32-S37. TAN G H, LI Q Y, DENG J. Test and analysis of natural modal characteristics of a wing model with thermal effect[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):S32-S37(in Chinese).
[19] SPIVEY N D. High-temperature modal survey of a hot-structure control surface:NASA/TM-2011-215965[R]. Washington, D.C.:NASA, 2011.
[20] 吴大方, 商兰, 高镇同, 等. 1700℃高温、有氧及时变环境下隔热性能试验[J]. 宇航学报, 2015, 36(9):1083-1092. WU D F, SHANG L, GAO Z T, et al. Experimental research on thermal-insulation performance under high-temperature/oxidation and time-varying environment up to 1700℃[J]. Journal of Astronautics, 2015, 36(9):1083-1092(in Chinese).
[21] 吴大方, 潘兵, 高镇同, 等. 超高温、大热流、非线性气动热环境试验模拟及测试技术研究[J]. 实验力学, 2012, 27(3):255-271. WU D F, PAN B, GAO Z T, et al. On the experimental simulation of ultra-high temperature, high heat flux and nolinear aerodynamic heating environment and thermo-machanical testing technique[J]. Journal of Experimental Mechanics, 2012, 27(3):255-271(in Chinese).
[22] 吴大方, 王岳武, 商兰, 等. 1200℃高温环境下板结构热模态试验研究与数值模拟[J]. 航空学报, 2016, 37(6):1861-1875. WU D F, WANG Y W, SHANG L, et al. Test research and numerical simulation on thermal modal of plate structure in 1200℃ high-temperature environments[J]. Acta Aeronautica et Astronantica Sinica, 2016, 37(6):1861-1875(in Chinese).
[23] 吴文军, 胡子君, 李俊宁, 等. Al2O3掺杂对SiO2纳米透波/隔热材料性能的影响[J]. 宇航材料工艺, 2014(1):97-100. WU W J, HU Z J, LI J N, et al. Effect on the properties of SiO2 nanoporous transparent-wave/heat-insulation materials doped with Al2O3[J]. Aerospace Materials and Technology, 2014(1):97-100(in Chinese).
[24] 杨世铭, 陶文铨. 传热学[M]. 北京:高等教育出版社, 2006:33-296. YANG S M, TAO W Q. Heat transfer[M]. Beijing:Higher Education Press, 2006:33-296(in Chinese).
Outlines

/