Material Engineering and Mechanical Manufacturing

Effects of radiation coatings on directional solidification microstructure of hollow turbine blades

  • HUANG Fuxiang ,
  • MIAO Kai ,
  • LU Zhongliang ,
  • XU Wenliang ,
  • ZHU Weijun ,
  • LI Dichen
Expand
  • State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Received date: 2017-05-27

  Revised date: 2017-08-31

  Online published: 2017-08-31

Supported by

National Basic Research Program of China (2013CB035703);the Fundamental Research Founds for the Central Universities

Abstract

To obtain a turbine blade with refined directional crystals, the effects of the graphite coating and the chromium oxide coating on the directional solidification microstructure are studied by numerical simulations and experiments. Numerical simulation results show that the temperature gradient at the top castings is improved by increasing the emissivity of the mold surface. The experimental results show that after the mold surface is coated with the chromium oxide, the heat dissipation performance of the mold surface is remarkably improved, and the primary dendrite spacing at the top of the casting is reduced. The average primary dendrite spacing at the top of the casting is 336 μm, 12.5% less than the one without coating and 2.9% lower than the one coated with graphite, and the directional solidification microstructure is significantly refined. A turbine blade with refined directional crystal is formed by using the integral ceramic mold with the chromium oxide coating.

Cite this article

HUANG Fuxiang , MIAO Kai , LU Zhongliang , XU Wenliang , ZHU Weijun , LI Dichen . Effects of radiation coatings on directional solidification microstructure of hollow turbine blades[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(3) : 421462 -421462 . DOI: 10.7527/S1000-6893.2017.421462

References

[1] REED R C. The superalloys:Fundamentals and applications[M]. Cambridge:Cambridge University Press, 2008:107-150.
[2] 冯炜, 汪文虎, 王孝忠, 等. 空心涡轮叶片精铸蜡型陶芯定位元件尺寸计算方法[J]. 航空学报, 2013, 34(1):181-186. FENG W, WANG W H, WANG X Z, et al. Size calculation method of ceramic core locators for hollow turbine blade investment casting wax patterns[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1):181-186(in Chinese).
[3] 崔康, 汪文虎, 蒋睿嵩, 等. 涡轮叶片精铸模具陶芯定位元件逆向调整算法[J]. 航空学报, 2011, 32(10):1924-1929. CUI K, WANG W H, JIANG R S, et al. Reverse adjustment algorithm of ceramic core locators in hollow turbine blade investment casting die[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1924-1929(in Chinese).
[4] 张立同, 曹腊梅, 刘国利. 近净形熔模精密铸造理论与实践[M]. 北京:国防工业出版社, 2007:207-220. ZHANG L T, CAO L M, LIU G L. Near net shape casting theory and practice[M]. Beijing:National Defence Industry Press, 2007:207-220(in Chinese).
[5] 丁阳, 常海萍. 涡轮叶片冷却有效性分析[J]. 航空学报, 2013, 34(1):46-51. DING Y, CHANG H P. Analysis of turbine blade cooling effectiveness[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1):46-51(in Chinese).
[6] 马德新. 高温合金叶片单晶凝固技术的新发展[J]. 金属学报, 2015, 51(10):1179-1190. MA D X. Development of single crystal solidification technology for production of superalloy turbine blades[J]. Acta Metallurgica Sinica, 2015, 51(10):1179-1190(in Chinese).
[7] 陈荣章. 航空铸造涡轮叶片合金和工艺发展的回顾与展望[J]. 航空制造技术, 2002(2):19-23. CHEN R Z. Review and prospect of developments of cast superalloys and technology of aeroengine turbine blade[J]. Aeronautical Manufacturing Technology, 2002(2):19-23(in Chinese).
[8] 喻秋平, 周尧和. 铸件定向凝固过程的数值模拟[J]. 航空学报, 1984, 5(3):313-320. YU Q P, ZHOU Y H. Numerical simulation of directional solidification process of castings[J]. Acta Aeronautica et Astronautica Sinica, 1984, 5(3):313-320(in Chinese).
[9] LIAN Y, LI D, ZHANG K. A method for flattening the solidification front in directional solidification technology[J]. Journal of Crystal Growth, 2015, 426(1):186-197.
[10] LIAN Y, LI D, ZHANG K. Effects of the location of a cast in the furnace on flatness of the solidification front in directional solidification[J]. Journal of Crystal Growth, 2016, 451:33-41.
[11] SZELIGA D, KUBIAK K, JARCZYK G. The influence of the radiation baffle on predicted temperature gradient in single crystal CMSX-4 castings[J]. International Journal of Metalcasting, 2013, 7(3):17-23.
[12] 乐献刚, 彭志江, 邹建波, 等. 隔热挡板厚度对DD6单晶高温合金凝固组织的影响[J]. 特种铸造及有色合金, 2014, 34(3):309-313. YUE X G, PENG Z J, ZOU J B, et al. Effects of thermal baffle thickness on the solidification microstructure of single crystal superalloy DD6[J]. Special Casting & Nonferrous Alloys, 2014, 34(3):309-313(in Chinese).
[13] QIN L, SHEN J, YANG G, et al. A design of non-uniform thickness mould for controlling temperature gradient and S/L interface shape in directionally solidified superalloy blade[J]. Materials & Design, 2017, 116:565-576.
[14] MA D X, BVHRIG-POLACZEK A. Avoiding grain defects in single crystal components by application of a heat conductor technique[J]. International Journal of Materials Research, 2009, 100(8):1145-1151.
[15] BETZ U, HUGO F, MAYER H. Improvements in DS/SC precision casting[C]//3rd International Charles Parsons Turbine Conference:Materials Engineering in Turbines and Compressors. London:Institute of Materials, 1995:557-565.
[16] 陈荣章, 佘力, 张宏炜, 等. DZ125定向凝固高温合金的研究[J]. 航空材料学报, 2000, 20(4):14-19. CHEN R Z, SHE L, ZHANG H W, et al. Investigation of directionally solidified alloy DZ125[J]. Journal of Aeronautical Materials, 2000, 20(4):14-19(in Chinese).
[17] 李涤尘, 吴海华, 卢秉恒. 快速原型制造技术/型芯型壳一体化空心涡轮叶片制造方法[J]. 航空制造技术, 2009(3):36-42. LI D C, WU H H, LU B H. Shaping method of hollow turbine blades with intergral shell and core ceramic mold[J]. Aeronautical Manufacturing Technology, 2009(3):36-42(in Chinese).
[18] 刘涛, 鲁中良, 苗恺, 等. 面向空心涡轮叶片的氧化铝基陶瓷铸型高温强化制造[J]. 航空学报, 2014, 35(7):2072-2080. LIU T, LU Z L, MIAO K, et al. High-temperature strengthening manufacturing of alumina-based ceramic molds used for hollow turbine blades[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):2072-2080(in Chinese).
[19] 李涤尘, 苏秦, 卢秉恒. 快速制造技术-增材制造-创新与创业的利器[J]. 航空制造技术, 2015(10):38-43. LI D C, SU Q, LU B H. Additive manufacturing-tool for innovation and entrepreneurship[J]. Aeronautical Manufacturing Technology, 2015(10):38-43(in Chinese).
[20] 圆山重直. 传热学[M]. 王世学, 张信荣, 译. 北京:北京大学出版社, 2011:110-117. MARUYAMA S. Heat transfer[M]. WANG S X, ZHANG X R, translated. Beijing:Peking University Press, 2011:110-117(in Chinese).
[21] MA D, SAHM P R. Primary spacing in directional solidification[J]. Metallurgical and Materials Transactions A:Physical Metallurgy and Material, 1998, 29(13):1113-1119.
[22] LU S Z, HUNT J D. A numerical analysis of dendritic and cellular array growth:The spacing adjustment mechanisms[J]. Journal of Crystal Growth, 1992, 123(1-2):17-34.
[23] HUNT J D, LU S Z. Numerical modeling of cellular/dendritic array growth:spacing and structure predictions[J]. Metallurgical and Materials Transactions A:Physical Metallurgy and Material, 1996, 27(3):611-623.
[24] WHITESELL H S, LI L, OVERFELT R A. Influence of solidification variables on the dendrite arm spacings of Ni-based superalloys[J]. Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science, 2000, 31(3):546-551.
Outlines

/