[1] REED R C. The superalloys:Fundamentals and applications[M]. Cambridge:Cambridge University Press, 2008:107-150. [2] 冯炜, 汪文虎, 王孝忠, 等. 空心涡轮叶片精铸蜡型陶芯定位元件尺寸计算方法[J]. 航空学报, 2013, 34(1):181-186. FENG W, WANG W H, WANG X Z, et al. Size calculation method of ceramic core locators for hollow turbine blade investment casting wax patterns[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1):181-186(in Chinese). [3] 崔康, 汪文虎, 蒋睿嵩, 等. 涡轮叶片精铸模具陶芯定位元件逆向调整算法[J]. 航空学报, 2011, 32(10):1924-1929. CUI K, WANG W H, JIANG R S, et al. Reverse adjustment algorithm of ceramic core locators in hollow turbine blade investment casting die[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1924-1929(in Chinese). [4] 张立同, 曹腊梅, 刘国利. 近净形熔模精密铸造理论与实践[M]. 北京:国防工业出版社, 2007:207-220. ZHANG L T, CAO L M, LIU G L. Near net shape casting theory and practice[M]. Beijing:National Defence Industry Press, 2007:207-220(in Chinese). [5] 丁阳, 常海萍. 涡轮叶片冷却有效性分析[J]. 航空学报, 2013, 34(1):46-51. DING Y, CHANG H P. Analysis of turbine blade cooling effectiveness[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1):46-51(in Chinese). [6] 马德新. 高温合金叶片单晶凝固技术的新发展[J]. 金属学报, 2015, 51(10):1179-1190. MA D X. Development of single crystal solidification technology for production of superalloy turbine blades[J]. Acta Metallurgica Sinica, 2015, 51(10):1179-1190(in Chinese). [7] 陈荣章. 航空铸造涡轮叶片合金和工艺发展的回顾与展望[J]. 航空制造技术, 2002(2):19-23. CHEN R Z. Review and prospect of developments of cast superalloys and technology of aeroengine turbine blade[J]. Aeronautical Manufacturing Technology, 2002(2):19-23(in Chinese). [8] 喻秋平, 周尧和. 铸件定向凝固过程的数值模拟[J]. 航空学报, 1984, 5(3):313-320. YU Q P, ZHOU Y H. Numerical simulation of directional solidification process of castings[J]. Acta Aeronautica et Astronautica Sinica, 1984, 5(3):313-320(in Chinese). [9] LIAN Y, LI D, ZHANG K. A method for flattening the solidification front in directional solidification technology[J]. Journal of Crystal Growth, 2015, 426(1):186-197. [10] LIAN Y, LI D, ZHANG K. Effects of the location of a cast in the furnace on flatness of the solidification front in directional solidification[J]. Journal of Crystal Growth, 2016, 451:33-41. [11] SZELIGA D, KUBIAK K, JARCZYK G. The influence of the radiation baffle on predicted temperature gradient in single crystal CMSX-4 castings[J]. International Journal of Metalcasting, 2013, 7(3):17-23. [12] 乐献刚, 彭志江, 邹建波, 等. 隔热挡板厚度对DD6单晶高温合金凝固组织的影响[J]. 特种铸造及有色合金, 2014, 34(3):309-313. YUE X G, PENG Z J, ZOU J B, et al. Effects of thermal baffle thickness on the solidification microstructure of single crystal superalloy DD6[J]. Special Casting & Nonferrous Alloys, 2014, 34(3):309-313(in Chinese). [13] QIN L, SHEN J, YANG G, et al. A design of non-uniform thickness mould for controlling temperature gradient and S/L interface shape in directionally solidified superalloy blade[J]. Materials & Design, 2017, 116:565-576. [14] MA D X, BVHRIG-POLACZEK A. Avoiding grain defects in single crystal components by application of a heat conductor technique[J]. International Journal of Materials Research, 2009, 100(8):1145-1151. [15] BETZ U, HUGO F, MAYER H. Improvements in DS/SC precision casting[C]//3rd International Charles Parsons Turbine Conference:Materials Engineering in Turbines and Compressors. London:Institute of Materials, 1995:557-565. [16] 陈荣章, 佘力, 张宏炜, 等. DZ125定向凝固高温合金的研究[J]. 航空材料学报, 2000, 20(4):14-19. CHEN R Z, SHE L, ZHANG H W, et al. Investigation of directionally solidified alloy DZ125[J]. Journal of Aeronautical Materials, 2000, 20(4):14-19(in Chinese). [17] 李涤尘, 吴海华, 卢秉恒. 快速原型制造技术/型芯型壳一体化空心涡轮叶片制造方法[J]. 航空制造技术, 2009(3):36-42. LI D C, WU H H, LU B H. Shaping method of hollow turbine blades with intergral shell and core ceramic mold[J]. Aeronautical Manufacturing Technology, 2009(3):36-42(in Chinese). [18] 刘涛, 鲁中良, 苗恺, 等. 面向空心涡轮叶片的氧化铝基陶瓷铸型高温强化制造[J]. 航空学报, 2014, 35(7):2072-2080. LIU T, LU Z L, MIAO K, et al. High-temperature strengthening manufacturing of alumina-based ceramic molds used for hollow turbine blades[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):2072-2080(in Chinese). [19] 李涤尘, 苏秦, 卢秉恒. 快速制造技术-增材制造-创新与创业的利器[J]. 航空制造技术, 2015(10):38-43. LI D C, SU Q, LU B H. Additive manufacturing-tool for innovation and entrepreneurship[J]. Aeronautical Manufacturing Technology, 2015(10):38-43(in Chinese). [20] 圆山重直. 传热学[M]. 王世学, 张信荣, 译. 北京:北京大学出版社, 2011:110-117. MARUYAMA S. Heat transfer[M]. WANG S X, ZHANG X R, translated. Beijing:Peking University Press, 2011:110-117(in Chinese). [21] MA D, SAHM P R. Primary spacing in directional solidification[J]. Metallurgical and Materials Transactions A:Physical Metallurgy and Material, 1998, 29(13):1113-1119. [22] LU S Z, HUNT J D. A numerical analysis of dendritic and cellular array growth:The spacing adjustment mechanisms[J]. Journal of Crystal Growth, 1992, 123(1-2):17-34. [23] HUNT J D, LU S Z. Numerical modeling of cellular/dendritic array growth:spacing and structure predictions[J]. Metallurgical and Materials Transactions A:Physical Metallurgy and Material, 1996, 27(3):611-623. [24] WHITESELL H S, LI L, OVERFELT R A. Influence of solidification variables on the dendrite arm spacings of Ni-based superalloys[J]. Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science, 2000, 31(3):546-551. |