Fluid Mechanics and Flight Mechanics

Delay phenomenon of boundary layer transition according to heating flux identified from flight test

  • GUO Yijun ,
  • ZHOU Yu ,
  • XIAO Hanshan ,
  • ZHOU Shuguang ,
  • QIU Bo ,
  • ZENG Lei ,
  • LIU Xiao
Expand
  • 1. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2017-03-20

  Revised date: 2017-07-18

  Online published: 2017-07-18

Supported by

National Key Research and Development Program of China (2016YFA0401200);National Basic Research Program of China (2014CB744100)

Abstract

This paper presents the results of an analysis of the thermocouple measurements used to infer the heating rates and dynamics of the boundary layer natural transition process during the successful first trajectory flight of China Aerodynamics Research and Development Center space vehicle model.It has been found that the approach used in the analysis of the thermocouple data for ground-based short-term experiments cannot be direct scaled to long time flight conditions.For the flight case,the variation history of temperature along the whole flying trajectory and the local 3D heat transfer between the transducer and near the vehicle structure must be considered.The heating rates on the model surface are also calculated using engineering methods,along with a discussion of the calculated flow properties that correspond to the transition events as identified in the flight data.The present analysis shows that the onset criterion number of transition from turbulent state to completely laminar flow at the place of a measurement point in the ascent stage is greater than that of the transition from the laminar flow to turbulent flow in the descent stage,meaning that there is a delay phenomenon existing in the boundary layer transition process.The results also show that the onset position of boundary layer transition in the flight condition is later than prediction by the criterion established using ground-based data,and the difference may be attributed to noise disturbances in the tunnels which caused early transition on the aft end.Comparison of calculation results and test results shows that for blunted cone shapes,when x/R>50,the flow field and heating rates become closer to the conic flow and flat plate results.The first flight data have verified that the aerothermodynamic engineering methods for hypersonic flows can be also used to predict the heating rates for the cases of Mach number below 5 with a reliable accuracy.

Cite this article

GUO Yijun , ZHOU Yu , XIAO Hanshan , ZHOU Shuguang , QIU Bo , ZENG Lei , LIU Xiao . Delay phenomenon of boundary layer transition according to heating flux identified from flight test[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(10) : 121255 -121255 . DOI: 10.7527/S1000-6893.2017.121255

References

[1] 张攀峰, 詹世革. 从国家自然科学基金资助看高超声速流动研究的发展现状[J]. 航空学报, 2015, 36(1):1-6. ZHANG P F,ZHAN S G.Development of hypersonic flow research in China based on supported projects of NSFC[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):1-6(in Chinese).
[2] 李建林. 临近空间高超声速飞行器发展研究[M]. 北京:中国宇航出版社, 2012. LI J L. Research on development of hypersonic near space vehicle[M]. Beijing:China Astronautic Publishing House, 2012(in Chinese).
[3] WRIGHT R L, ZOBY E V. Flight boundary layer transition measurements on a slender cone at Mach 20:AIAA-1977-0719[R]. Reston, VA:AIAA, 1977.
[4] ILIFF K W, SHAFER M F. A comparison of hypersonic vehicle flight and prediction results:NASA TM-104313[R]. Washington, D.C.:NASA, 1995.
[5] KUNTZ D W, POTTER D L. Boundary layer transition and hypersonic flight testing:AIAA-2007-0308[R]. Reston, VA:AIAA, 2007.
[6] HOWARD F G. Single-thermocouple method for determining heat flux to a thermally thick wall:NASA TND-4737[R]. Washington, D.C.:NASA, 1968.
[7] 钱炜祺, 蔡金狮. 再入航天飞机表面热流密度辨识[J]. 宇航学报, 2000, 21(4):1-6. QIAN W Q, CAI J S. Surface heat flux identification of reentry space shuttle[J]. Journal of Astronautica, 2000, 21(4):1-6(in Chinese).
[8] 钱炜祺, 周宇, 何开锋, 等. 表面热流辨识技术在边界层转捩位置测量中的应用初步研究[J]. 实验流体力学, 2012, 26(1):74-78. QIAN W Q, ZHOU Y, HE K F, et al. A preliminary study for application of surface heat flux estimation technology in transition measurement[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1):74-78(in Chinese).
[9] 张志成, 潘梅林, 刘初平. 高超声速气动热和热防护[M]. 北京:国防工业出版社, 2003. ZHANG Z C, PAN M L, LIU C P. Aerodynamic heating and TPS for hypersonic aircrafts[M]. Beijing:National Defence Industry Press, 2003(in Chinese).
[10] 罗纪生. 高超声速边界层转捩及预示[J]. 航空学报, 2015, 36(1):357-372. LUO J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):357-372(in Chinese).
[11] 中国空气动力研究与发展中心.高超声速飞行器热环境及烧蚀/侵蚀综合分析软件系统[简称AEROHEATS,V1.0版].中华人民共和国计算机软件著作权登记证书(登记号:2013SR132872, 证书号:0638634号)[Z]. 2013. China Aerodynamics Research and Development Center. Thermal environment and ablation/erosion analysis software[AEROHEATS, V1.0]. Computer Software Copyright Registration Certificate (Registration Mark:2013SR132872, Certificate No.0638634)[Z].2013(in Chinese).
[12] 国义军, 代光月, 桂业伟, 等. 再入飞行器非平衡气动加热工程计算方法研究[J]. 空气动力学学报, 2015, 33(5):581-587. GUO Y J, DAI G Y, GUI Y W, et al. Engineering calculation of non-equilibrium effects on thermal environment of reentry vehicles[J]. Acta Aerodynamica Sinica, 2015, 33(5):581-587(in Chinese).
[13] 国义军. 炭化材料烧蚀热响应理论分析与工程应用[J]. 空气动力学学报, 1994, 12(1):94-99. GUO Y J. Analysis of ablative thermal response of charring material with engineering applications[J]. Acta Aerodynamica Sinica, 1994, 12(1):94-99(in Chinese).
[14] 国义军, 童福林, 桂业伟. 烧蚀外形方程差分计算方法研究[J]. 空气动力学学报, 2009, 27(4):480-484. GUO Y J, TONG F L, GUI Y W. Finite difference schemes for solution of the nosetip shape change equation[J]. Acta Aerodynamica Sinica, 2009, 27(4):480-484(in Chinese).
[15] 国义军, 桂业伟, 童福林. C/SiC复合材料烧蚀机理和通用计算模型研究[J]. 空气动力学学报, 2012, 30(1):34-38. GUO Y J, GUI Y W, TONG F L. Thermochemical ablation mechanisms and general relationship for C/SiC material oxidation[J]. Acta Aerodynamica Sinica, 2012, 30(1):34-38(in Chinese).
[16] 国义军, 桂业伟, 童福林. 碳基材料氧化烧蚀的双平台理论和反应控制机理[J]. 空气动力学学报, 2014, 32(6):755-760. GUO Y J, GUI Y W, TONG F L. A dual platform theory for carbon-based material oxidation with reaction-diffusion rate controlled kinetics[J]. Acta Aerodynamica Sinica, 2014, 32(6):755-760(in Chinese).
[17] 国义军, 石卫波. 电弧加热器试验条件下端头烧蚀外形计算[J]. 空气动力学学报, 2002, 20(1):115-119. GUO Y J, SHI W B. Numerical simulation of nosetip shape change during ablation on arc heater[J]. Acta Aerodynamica Sinica, 2002, 20(1):115-119(in Chinese).
[18] 国义军, 刘强, 童福林, 等. 表面涂漆对火箭尾翼热结构的影响[J]. 空气动力学学报, 2007, 25(1):23-28. GUO Y J, LIU Q, TONG F L, et al. Effect of paint coating on the internal thermal structure of rocket wing[J]. Acta Aerodynamica Sinica, 2007, 25(1):23-28(in Chinese).
[19] SCHLICHTING H. Boundary-layer theory[M]. New York:McGraw-Hill Book Company, 1979.
[20] ANDERSON J D,Jr. Hypersonic and high temperature gas dynamics[M]. New York:McGraw-Hill Book Company, 1989.
[21] 苏彩虹, 周恒. 超音速和高超音速有攻角圆锥边界层的转捩预测[J]. 中国科学G辑, 物理学力学天文学, 2009, 39(6):874-882. SU C H, ZHOU H. Transition prediction for supersonic and hypersonic boundary layers on a cone with an angle of attack[J]. Science in China Series G Physics, Mechanics & Astronomy, 2009, 39(6):874-882(in Chinese).
[22] TIMMER H G, ARNE C L,STOKES T R, et al. Aerothermodynamic characteristics of slender ablating re-entry vehicles:AIAA-1970-0826[R]. Reston, VA:AIAA, 1970.
[23] THYSON N, NEURINGER J, PALLONE A, et al. Nose tip shape change predictions during atmospheric reentry:AIAA-1970-0827[R]. Reston, VA:AIAA, 1970.
[24] 赵梦熊. "联盟"号返回舱空气动力专集[R]. 北京:航天工业总公司第七一○所, 1995. ZHAO M X. Special assemble of aerodynamics of Russian Union aircraft reentry module[R]. Beijing:The 701 Institute of China Aerospace Industry Corporation, 1995(in Chinese).
[25] WIDHOPF G F. Laminar, transition, and turbulent heat transfer measurements on a yawed blunt conical nosetip:AD748292[R].Paris:AGARD, 1972.
[26] THOMPSON R A, HAMILLTON H H, BERRY S A, et al. Hypersonic boundary layer transition for X-33 phase Ⅱ vehicle:AIAA-1998-0867[R]. Reston, VA:AIAA, 1998.
[27] BERRY S A, DARYABEIGI K, WUSTER K. Boundary layer transition on X-43A:AIAA-2008-3736[R]. Reston, VA:AIAA, 2008.
[28] CLINE P B. Entry heat transfer[M]//SAE Aerospace Applied Thermodynamics Manual.2nd ed.1969:517-598.
[29] 卞荫贵, 钟家康. 高温边界层传热[M]. 北京:科学出版社, 1986. BIAN Y G, ZHONG J K. High temperature boundary layer heat transfer[M]. Beijing:Science Press, 1986(in Chinese).

Outlines

/