ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Comparison of turbulence models for numerical simulation of low-speed flow around NACA4412 airfoil
Received date: 2017-05-25
Revised date: 2017-07-07
Online published: 2017-07-07
Supported by
National Natural Science Foundation of China(11402307)
Numerical simulation of the flow around the NACA4412 airfoil is implemented based on Spalart-Allmaras (S-A), SST k-ω and Gao-Yong turbulence models. In our procedures, convection terms and diffusion terms are calculated using Roe scheme and center difference scheme respectively. The Runge-Kutta time marching method is employed to solve space discrete control equations. The flow relaxation effect at the NACA4412 airfoil trailing edge is analyzed with the models. The pressure distribution on the wall surface, velocity profile distribution and Reynolds stress distribution obtained with the three models are compared. The numerical results obtained using the three turbulence models agree with the experimental data well in general. SST k-ω turbulence model gets the best flow details and lift coefficient. The Gao-Yong turbulence model can simulate most accurately for mean velocity profiles and Reynolds shear stress.
YAN Wenhui , XUE Ranran . Comparison of turbulence models for numerical simulation of low-speed flow around NACA4412 airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(S1) : 721515 -721515 . DOI: 10.7527/S1000-6893.2017.721515
[1] 褚洪杰, 马晖扬. 应用于翼型绕流的线性/非线性湍流模型的研究[J]. 空气动力学学报,2005, 23(2): 237-242. CHU H J, MA H Y. Linear and nonlinear turbulence models for simulation of the flows around airfoil[J]. Acta Aerodynamica Sinica, 2005, 23(2): 237-242 (in Chinese).
[2] 李仁年, 袁尚科, 赵子琴. 尾缘改型对风力机翼型性能的影响研究[J]. 空气动力学学报, 2012, 30(5): 646-652. LI R N, YUAN S K, ZHAO Z Q. Research on the effect of trail-edge improvement on airfoils performance for wind turbine[J].Acta Aerodynamica Sinica, 2012, 30(5): 646-652 (in Chinese).
[3] 梁赟, 刘火星, 邹正平. 尾迹对低压涡轮边界层稳定性的影响[J]. 航空动力学报, 2016, 31(4): 886-893. LIANG Y, LIU H X, ZOU Z P. Influence of wakes on boundary layer stability in low-pressure turbines[J]. Journal of Aerospace Power,2016, 31(4): 886-893 (in Chinese).
[4] COLES D, WADCOCK A. Flying-hot-wire study of two-dimensional mean flow past an NACA4412 airfoil at maximum lift:AIAA-1978-1196[R]. Reston, VA: AIAA, 1978.
[5] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows: AIAA-1992-0439[R]. Reston, VA: AIAA,1992.
[6] MENTER F, RUMSEY C. Assessment of two-equation turbulence models for transonic flows: AIAA-1994-2343[R]. Reston, VA: AIAA, 1994.
[7] GAO G, YONG Y. Partial-average-based equations of incompressible turbulent flow [J]. International Journal of Non-Linear Mechanics, 2004, 39(9): 1407-1419.
[8] GAO G, YONG Y. On incompressible turbulent flow: Partial average based theory and applications[J]. Journal of Hydraulic Research, 2005, 43(4): 399-407.
[9] 高歌. Gao-Yong理性湍流方程[J]. 推进技术,2010, 31(6): 666-675. GAO G. A review on the research development of Gao-Yong equations of turbulent flows[J]. Journal of Propulsion Technology, 2010, 31(6): 666-675(in Chinese).
[10] 闫文辉, 张常贤, 陈宁宁,等. 用Gao-Yong湍流方程组数值模拟高雷诺数顶盖驱动方腔流[J]. 水科学进展, 2008, 19(3): 149-154. YAN W H, ZHANG C X, CHEN N N, et al. Numerical simulation high Reynolds number lid-driven cavity flow using Gao-Yong turbulence equations[J]. Journal of Advances in Water Science, 2008, 19(3):149-154(in Chinese).
[11] 闫文辉, 高歌, YONG Y. 应用GAO-YONG湍流模式数值模拟三维激波/湍流边界层干扰[J].航空动力学报, 2009, 24(10):2193-2200. YAN W H, GAO G, YONG Y. Numerical simulation of 3-D shock wave/turbulent boundary layer interaction using GAO-YONG turbulence model[J]. Journal of Aerospace Power, 2009, 24(10):2193-2200(in Chinese).
[12] 闫文辉, 吴小虹, 徐悦. 数值模拟入射斜激波/平板湍流边界层干扰流动[J]. 空军工程大学学报(自然版), 2012, 13(2): 11-15. YAN W H, WU X H, XU Y. Numerical simulation of incident oblique shock-wave flat plate turbulent boundary layer interaction[J]. Journal of Airforce Engineering University(Natural Science Edition), 2012, 13(2): 11-15(in Chinese).
[13] 任鑫, 高歌. 使用GAO-YONG湍流方程组对翼型绕流的计算[J]. 航空学报, 2007, 28(S1): 28-34. REN X, GAO G. The calculation of airfoil flows using GAO-YONG turbulence equations[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(S1): 28-34(in Chinese).
[14] 闫文辉, 高歌. Sajben 跨声速扩压器分离流动中湍流模型数值研究[J]. 推进技术, 2016, 37(9): 1631-1637. YAN W H, GAO G. Numerical study of turbulence models in Sajben diffuser transonic separation flow[J]. Journal of Propulsion Technology, 2016, 37(9): 1631-1637(in Chinese).
[15] GROSS A, FASEL H F. Hybrid turbulence model simulations of partially stalled airfoil flow[J]. AIAA Journal, 2016, 54(4): 1-15.
[16] 周铸, 黄江涛, 黄勇, 等. CFD 技术在航空工程领域的应用、挑战与发展[J]. 航空学报,2017, 38(3): 020891. ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field: Applications,challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 020891 (in Chinese).
[17] 杨金广, 王春雪, 王大磊, 等. 基于时间推进的通流计算方法:现状及展望[J]. 航空学报,2016, 37(1): 1-13. YANG J G, WANG C X, WANG D L, et al. Time marching based through flow method: Current status and future development[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 1-13(in Chinese).
[18] 涂国华,燕振国,赵晓慧,等.SA和SST湍流模型对高超声速边界层强制转捩的适应性[J]. 航空学报,2015, 36(5): 1471-1479. TU G H, YAN Z G, ZHAO X H, et al. SA and SST turbulence models for hypersonic forced boundary layer transition[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1471-1479(in Chinese).
[19] WRAY T J, AGARWAL R K. A new low Reynolds number one-equation turbulence model based on a k-ω closure:AIAA-2014-2208[R]. Reston, VA: AIAA, 2014.
[20] GAN J Y, SHEN Y Q, ZHA G C. Comparison of drag prediction using RANS models and DDES for the DLR-F6 configuration using high order schemes: AIAA -2016-0553 [R]. Reston, VA: AIAA, 2016.
/
〈 | 〉 |