Special Column of Helicopter Technology

A review of mathematical modeling of helicopter flight dynamics

  • CHEN Renliang ,
  • LI Pan ,
  • WU Wei ,
  • KONG Weihong
Expand
  • National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2016-11-07

  Revised date: 2017-02-19

  Online published: 2017-04-19

Supported by

National Natural Science Foundation of China (11672128)

Abstract

The mathematical model of helicopter flight dynamics is the basis for the design of the flight control system, and is also the tool for the design and assessment of helicopter flight quality. As the helicopter is a multi-body system, the mathematical modeling of helicopter flight dynamics should consider the coupling between motion, inertia, structure and aerodynamics, as well as the unsteady and nonlinear characteristics, so as to give the physical meaning and mathematical expression of each motion part. Therefore, the mathematical modeling of helicopter flight dynamics is a complicated process of analyzing and synthesizing different hypotheses and subsystem models. The paper reviews briefly the development of the flight dynamic modeling of the helicopter with a main rotor and a tail rotor. The emphasis is put on the modeling of main rotor aerodynamics, and aerodynamic interaction among the rotor, fuselage and tail rotor. Integrated modeling of the main rotor and engine, as well as the research on maneuver flight, is also the focus of the paper. Suggestions for future research on helicopter flight dynamic modeling are also provided.

Cite this article

CHEN Renliang , LI Pan , WU Wei , KONG Weihong . A review of mathematical modeling of helicopter flight dynamics[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(7) : 520915 -520915 . DOI: 10.7527/S1000-6893.2017.520915

References

[1] BASKETT B J. Aeronautical design, performance specification, handing qualities requirements for military rotorcraft: ADS-33E-PRF[S]. Alabama: AMCOM, 2000.
[2] 高正, 陈仁良. 直升机飞行动力学[M]. 北京: 科学出版社, 2003: 24-42. GAO Z, CHEN R L. Helicopter dynamics[M]. Beijing: Science Press, 2003: 24-42 (in Chinese).
[3] JOHNSON W. Helicopter theory[M]. New Jersey: Princeton University Press, 1980: 23-902.
[4] SHERIDAN P F, SMITH R F. Interactional aerodynamics-a new challenge to helicopter technology[J]. Journal of the American Helicopter Society, 1980, 25(1): 3-21.
[5] PADFIELD G D. Helicopter flight dynamics: The theory and application of flying qualities and simulation modelling[M]. 2nd ed. Oxford: Blackwell Science Ltd, 1996: 23-500.
[6] PROUTY R W. 直升机性能及稳定性和操纵性[M]. 高正, 陈文轩, 译. 北京: 航空工业出版社, 1998: 24-27. PROUTY R W. Helicopter performance stability and control[M]. GAO Z, CHEN W X, translated. Beijing: Aviation Industry Press, 1998: 24-27 (in Chinese).
[7] BLAKE B B, ALANSKY I B. Stability and control of the YUH-61A[J]. Journal of the American Helicopter Society, 1977, 22(1): 2-10.
[8] KISIELOWSKI E, PERLMUTTER A A, TANG J. Stability and control handbook for helicopters: DCR-186[R]. Pennsylvania: Dynasciences Corp Blue Bell Pa, 1967.
[9] 佚名. 军用直升机飞行品质规范背景材料和使用说明[M]. 北京: 航空工业出版社, 1986: 15-128. YI M. Military helicopter flight quality specification background materials and instructions[M]. Beijing: Aviation Industrry Press, 1986: 15-128 (in Chinese).
[10] DOWELL E H, TANG D. Nonlinear aeroelasticity and unsteady aerodynamics[J]. AIAA Journal, 2002, 40(9): 1697-1707.
[11] STURISKY S H, LEWIS W D, SCHRAGE D P. Development and validation of a comprehensive real time AH-64 apache simulation model[C]//Proceedings of the 48th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1992: 1267-1280.
[12] ANDERSON W D. Rexor rotorcraft simulation model[M]. Florida: Eustis Directorate, 1976: 22-54.
[13] JOHNSON W A. Comprehensive analytical model of rotorcraft aerodynamics and dynamics: NASA-TM-81182/81183/81184[R]. Washington, D.C.: NASA, 1980.
[14] HILBERT K B. A mathematical model of UH-60 helicopter: NASA-TM-85890[R]. Washington, D.C.: NASA, 1984.
[15] PHILIPS J D. A mathematical model of SH-3G helicopter: NASA-TM-84316[R]. Washington, D.C.: NASA, 1980.
[16] HACKETT W E, GERNETT T S, BOREK B V. Mathematical model for the CH-47B helicopter capable of real time simulation of the full flight envelope: NASA-CR-166458[R]. Washington, D.C.: NASA, 1983.
[17] CHEN R T N. A simplified rotor system mathematical model for piloted flight dynamics simulation: NASA-TM-78575[R]. Washington, D.C.: NASA, 1979.
[18] CHEN R T N. Effects of primary rotor parameters on flapping dynamics: NASA-TP-1431[R]. Washington, D.C.: NASA,1980.
[19] JOHNSON W A. Comprehensive analytical model of rotorcraft aerodynamics and dynamics. Part 1: Analysis s development: AD-A0900513[R]. Washington, D.C.: AD, 1980.
[20] TALBOT P D, TINLING B E, DECKER W A, et al. A mathematical model of a single main rotor helicopter for piloted simulation: NASA-TM-84281[R]. Washington, D.C.: NASA, 1982.
[21] SHERIDAN P F, ROBINSON C, SHAW J DR. Mathematical modeling for helicopter simulation of low speed, low altitude and steeply descending flight: NASA-CR-199385[R]. Washington, D.C.: NASA, 1982.
[22] HOWLETT J J. UH-60A black hawk engineering simulation program: NASA-CR-166309[R]. Washington, D.C.: NASA, 1981.
[23] BALLIN M G. Validation of a real-time engineering simulation of the UH-60A helicopter: NASA-TM-88360[R]. Washington, D.C.: NASA, 1987.
[24] SARATHY S, MURTHY U R. An advanced rotorcraft flight simulation model: parallel implementation and performance analysis: AIAA-1993-3550[R]. Reston: AIAA, 1993.
[25] KIM F D, CELI R, TISHLER N B. High order state space simulation models of helicopter flight mechanics[J]. Journal of the American Helicopter Society, 1993, 38(4): 16-27.
[26] LEWIS M S, AIKEN E W. Piloted simulation of one-on-one helicopter air combat at NOE flight levels: NASA-TM-866686[R]. Washington, D.C.: NASA, 1985.
[27] HEFFLEY R K. Minimum-complexity helicopter simulation mathematical model: NASA-CR-177476[R]. Washington, D.C.: NASA, 1988.
[28] TALBOT P D, CORLISS L D. A mathematical force and moment model of a UH-1H helicopter for flight dynamic simulation: NASA-TM-73254[R]. Washington, D.C.: NASA, 1977.
[29] HE C J, LEWIS W D. A parametric study of real time mathematical modeling incorporating dynamic wake and elastic blades[C]//The 48th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1992: 1181-1196.
[30] DAVIS J M. Rotorcraft simulation with aeroelastic rotor and improved aerodynamics representation: USAAMRDL-TR-74-10[R]. Maryland: ARL, 1974.
[31] CHEN R T N, LEBACQZ J V, AIKEN E W. Helicopter mathematical models and control law development for handling qualities: NASA-CR-249[R].Washington, D.C.: NASA, 1988.
[32] MILLER D G, WHITE F. A treatment of the impact of rotor-fuselage coupling on helicopter handling qualities[C]//Proceedings of the 43rd Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1987: 631-644.
[33] PITT D M, PETER D A. Theoretical prediction of dynamic inflow derivatives[J]. Vertica, 1981, 5(1): 21-34.
[34] ZHAO X, CURTISS H C. A linearized model of helicopter dynamics including correlation with flight test[C]//Proceedings of the Second International Conference on Rotorcraft Basic Research. Maryland: College Park, 1988: 51-83.
[35] TAKAHASHI M D. A flight dynamic helicopter mathematical model with a single flap-lag-torsion main rotor: NASA-TM-102267[R]. Washington, D.C.: NASA, 1990.
[36] BALLIN M G. Validation of a real-time engineering simulation of the UH-60A helicopter: NASA-TM-88360[R]. Washington, D.C.: NASA, 1987.
[37] VON G W. Dynamic inflow modeling for helicopter rotors and its influence on the prediction of Cross-coupling[C]//Proceedings of the American Helicopter Society Aeromechanics Specialist Conference. Fairfax Virginia: AHS, 1995: 21-31.
[38] CHAIMOVITCH M, ROSEN A, RAND O, et al. Investigation of the flight mechanics simulation of a hovering helicopter[C]//Proceedings of the 48th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1992: 1237-1256.
[39] DUVAL R. A real-time blade element helicopter simulation for handling qualities analysis[C]//Proceedings of the 15th European Rotorcraft Forum. Amsterdam: ERF, 1989: 766-785.
[40] HE C, DUVAL R. An unsteady airload model with dynamic stall for rotorcraft simulation[C]//Proceedings of the 50th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1994: 931-948.
[41] HE C. Development and application of a generalized dynamic wake theory for lifting rotors[J]. Building Service Engineering, 1989, 22(22): 95-101.
[42] PETER D A, BOYD D, He C. Finite-state induced-flow model for rotors in hover and forward flight[J]. Journal of the American Helicopter Society, 1989, 34(4): 5-17.
[43] KIM F D, CELI R, TISCHLER M B. Forward flight trim calculation and frequency response validation of a high-order helicopter simulation model[J]. Journal of Aircraft, 1993, 30(6): 854-863.
[44] TURNOUR S R, CELI R. Modeling of flexible rotor blades for helicopter flight dynamics applications[J]. Journal of the American Helicopter Society, 1996, 41(1): 52-66.
[45] TURNOUR S R, CELI R. Effects of unsteady aerodynamics on the flight dynamics of an articulated rotor helicopter[J]. Journal of Aircraft, 1997, 34(2): 187-196.
[46] 杨超, 洪冠新, 宋寿峰. 直升机飞行动力学放射非线性系统建模[J]. 北京航空航天大学学报, 1997, 23(4): 471-476. YANG C, HONG G X, SONG S F. Affine nonlinear mathematical model for helicopter flight dynamics[J]. Journal of Beijing University of Aeronautics and Astronautics, 1997, 23(4): 471-476 (in Chinese).
[47] 陈仁良. 直升机飞行动力学数学建模及机动性研究[D]. 南京: 南京航空航天大学, 1998: 25-56. CHEN R L. A mathematical model of helicopter flight dynamics and investigation of maneuverability[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 1998: 25-56 (in Chinese).
[48] 孙传伟. 直升机飞行动力学模型与飞行品质评估[D]. 南京: 南京航空航天大学, 2001: 20-66. SUN C W. Helicopter flight dynamics model and flight quality evaluation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2001: 20-66 (in Chinese).
[49] 李建波, 高正. 直升机机动飞行仿真的气动建模及试验研究[J]. 航空学报, 2003, 24(2): 116-118. LI J B, GAO Z. Aerodynamic modeling and experiment for simulation of helicopter maneuver flight[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(2): 116-118 (in Chinese).
[50] SPOLDI S, RUCKEL P. High fidelity helicopter simulation using free wake, lifting line tail, and blade element tail rotor models[C]//Proceedings of the 59th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 2003: 1880-1886.
[51] WACHSPRESS D A, QUACKENBUSH T R, BOSCHITSCH A H. First-principles free-vortex wake analysis for helicopters and tiltrotors[C]//Proceedings of the 59th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 2003: 1763-1786.
[52] HORN J F, BRIDGES D O, WACHSPRESS D A, et al. Implementation of a free-vortex wake model in real-time simulation of rotorcraft[J]. Journal of Aerospace Computing, Information, and Communication, 2006, 3(3): 93-107.
[53] RIBERA M. Helicopter flight dynamics simulation with a time-accurate free-vortex wake model[D]. Maryland: University of Maryland, 2007: 33-158.
[54] D’ANDREA A. Development of a multi-processor unstructured panel code coupled with CVC free wake model for advanced analysis of rotorcrafts and tiltrotors[C]//American Helicopter Society 64th Annual Forum. Fairfax Virginia: AHS, 2008: 120-139.
[55] 李攀. 旋翼非定常自由尾迹模型及高置信度直升机飞行动力学建模研究[D]. 南京: 南京航空航天大学, 2010: 20-99. LI P. Study on unsteady free wake model of rotor and high reliability helicopter flight dynamics modeling[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010: 20-99 (in Chinese).
[56] RICHARD B, LEWIS W D. Huey cobra maneuvering investigations[C]//The 26th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1970: 158-178.
[57] RODGER L, FINNESTEAD M W, WILLIAM J. C. Engineering flight test: AH-1G helicopter (Hueycobra) performance: AD-882220[R]. Washington, D.C.: AD, 1971.
[58] GEORGE M, DONALD Y. BROADHURST G, et al. Utility tactical transport aircraft system (UTTAS) maneuver criteria: AD-902707[R]. Washington, D.C.: AD, 1972.
[59] WOOD T L, LIVINGSTON C L. An energy method for prediction of helicopter maneuverability: AD-A021266[R]. Washington, D.C.: AD, 1971.
[60] WELLS C D, Wood T L. Maneuverability-theory and application[J]. Journal of the American Helicopter Society, 1973, 18(1): 10-22.
[61] WOOD T L, FORD D G, BRIGMM G H. Maneuver criteria evaluation program: AD-782207[R]. Washington, D.C.: AD, 1974.
[62] WOOD T L, WAAK T. Improved maneuver criteria evaluation program: AD-A080408[R]. Washington, D.C.: AD, 1979.
[63] THOMSON D G, BRADLEY R. An investigation of the stability of flight path constrained helicopter maneuvers by inverse simulation[C]//13th European Rotorcraft Forum. Arles. France: ERF, 1987: 121-141.
[64] 曹义华. 直升机的机动飞行研究[D]. 南京: 南京航空航天大学, 1990: 22-95. CAO Y H. Research on helicopter maneuver flight[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 1990: 22-95 (in Chinese).
[65] EVERSMAN W, TEWAI A. A reduced cost rational-function approximation for unsteady aerodynamics: AIAA-1990-1166[R]. Reston: AIAA, 2013.
[66] TYLER J C, LEISHMAN J G. Analysis of pitch and plunge effects on unsteady airfoil behavior[J]. Journal of the American Helicopter Society, 1992, 37(3): 68-82.
[67] YEN J G, YUCE M. Correlation of pitch-link loads in deep stall on bearingless rotors[J]. Journal of the American Helicopter Society, 1992, 37(4): 4-15.
[68] MELLO A F, RAND O. Unsteady frequency domain analysis of helicopter non-rotating lifting surfaces[J]. Journal of the American Helicopter Society, 1991, 36(2): 70-80.
[69] SHIN C, LOURENCO L, DOMMELEN L V. Unsteady flow past an airfoil pitching at a constant rate[J]. AIAA Journal, 1992, 30(5): 1153-1161.
[70] BEDDOES T S. A synthesis of unsteady aerodynamic effects including stall hysteresis[J]. Vertica, 1976, 1(2): 113-123.
[71] GRAY L. Wind tunnel test of thin airfoils oscillating near stall: USAAVLABS-TR68-89[R]. Maryland: ARL, 1968.
[72] AZUMA A, OBATA A. Induced flow variation of helicopter rotor operating in the vortex ring state[J]. Journal of Aircraft, 1968, 5(4): 381-386.
[73] TRAN C T, PITOT D. Semi-empirical model for the dynamic stall of airfoil of airfoils in view of the application to the calculation of the responses of a helicopter blade in forward flight[J]. Vertica, 1981, 5(1): 35-53.
[74] TRUONG V K. A 2-D dynamic stall model based on a half bifurcation[C]//Proceedings of the 19th European Rotorcraft Forum. Cernobbio: ERF, 1993: 23-23.
[75] LEISHMAN J G, BEDDOES T S. A generalized model for airfoil unsteady aerodynamic behaviour and dynamic stall using the indicial method[C]//Proceedings of 42nd Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1986: 243-265.
[76] CHEN R T N. A survey of nonuniform inflow models for rotorcraft flight dynamics and control applications[J]. Vertica, 1990, 14(2): 147-184.
[77] LEISHMAN J G. Principles of helicopter aerodynamics[M]. 2nd ed. New York: Cambridge University Press, 2006: 78-198.
[78] COLEMAN R P, FEINGOLD A M, STEMPIN C W. Evaluation of the induced-velocity field of an idealized helicopter rotor: NACA-ARR-L5E10[R]. Washington, D.C.: NACA, 1945.
[79] CARPENTER P J, FRIEDOVICH B. Effect of a rapid blade-pitch increase on the thrust and induced-velocity response of a full-scale helicopter rotor: NACA-TN-3044[R]. Washington, D.C.: NACA, 1953.
[80] BAROCELA E B, PETER D A, KROTHAPALLI K R, et al. The effect of wake distortion on rotor inflow gradients and off-axis coupling: AIAA-1997-3579[R]. Reston: AIAA, 1997.
[81] KROTHAPALLI K R, PRASAD J V, PETER D A. Helicopter rotor dynamic inflow modeling for maneuvering flight[C]//Proceedings of the 55th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1999: 498-509.
[82] ZHAO J, PRASAD J V, PETER D A. Investigation of wake curvature dynamics for helicopter maneuvering flight simulation[C]//Proceedings of the 59th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 2003: 1887-1901.
[83] ZHAO J. Dynamic wake distortion model for helicopter maneuvering flight[D]. Atlanta: Georgia Institute of Technology, 2005: 18-37.
[84] ROSEN A, ISSER A. A model of the unsteady aerodynamics of a hovering helicopter rotor that includes variations of the wake geometry[J]. Journal of the American Helicopter Society, 1995, 40(3): 6-16.
[85] ROSEN A, ISSER A. A new model of rotor dynamics during pith and roll of a hovering helicopter[J]. Journal of the American Helicopter Society, 1995, 40(3): 17-28.
[86] KELLER J D. An investigation of helicopter dynamic coupling using an analytical model[J]. Journal of the American Helicopter Society, 1996, 41(4): 322-330.
[87] KELLER J D, CURTISS H C. A critical examination of the methods to improve the off-axis response prediction of helicopters[C]//Proceedings of the 54th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1998: 1134-1147.
[88] BHAGWAT M J. Mathematical modelling of the transient dynamics of helicopter rotor wakes using a time-accurate free-vortex methods[D]. Maryland: University of Maryland, 2001:22-97.
[89] 徐进. 直升机大机动飞行中旋翼非定常空气动力研究[D]. 南京: 南京航空航天大学, 2007: 25-95. XU J. Study on unsteady aerodynamic force of rotor in helicopter maneuvering flight[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007: 25-95.
[90] CRIMI P. Theoretical prediction of the flow in the wake of a helicopter rotor: BB-1994-5-1[R]. New York: Cornell Aeronautical Laboratory, 1965.
[91] LEE D J, NA S U. Predictions of airloads and wake geometry for slowly starting rotor blades in hovering flight by using time marching free vortex blob method[C]//Annual Forum, 52nd. Fairfax Virginia: AHS, 1996: 532-540.
[92] LEE D J, NA S U. Numerical simulations of wake structure generated by rotating blades using a time marching free vortex blob method[J]. European Journal of Mechanics/B Fluids, 1999, 18(1): 147-159.
[93] GREENGARD L, ROKHLIN V. A fast algorithm for particle simulations[J]. Journal of Computational Physics, 1987, 73(2): 325-348.
[94] BROWN R E. Rotor wake modeling for flight dynamic simulation of helicopters[J]. AIAA Journal, 2000, 38(1): 57-63.
[95] BROWN R E, LINE A J. Efficient high-resolution wake modeling using the vorticity transport equation[J]. AIAA Journal, 2005, 43(7): 1434-1443.
[96] HE C, ZHAO J. Modeling rotor wake dynamics with viscous vortex particle method[J]. AIAA Journal, 2009, 47(4): 902-915.
[97] ZHAO J, HE C. A viscous vortex particle model for rotor wake and interference analysis[J]. Journal of the American Helicopter Society, 2010, 55(1): 1-14.
[98] CAO Y H, YU Z Q, SU Y, Combined free wake/CFD methodology for predicting transonic rotor flow in hover[J]. Chinese Journal of Aeronautics, 2002, 15(2): 65-71.
[99] WHITEHOUSE G R, TADGHIGHI H, Investigation of hybrid grid-based computational fluid dynamics methods for rotorcraft flow analysis[J]. Journal of the American Helicopter Society, 2011, 56(3): 032004-1~032004-10.
[100] ZHAO J, HE C, Rotor blade structural loads analysis using coupled CSD/CFD/VVPM[C]//American Helicopter Society 69th Annual Forum. Fairfax Virginia: AHS, 2013: 40-62.
[101] LI P, CHEN R L. A mathematical model for helicopter comprehensive analysis[J]. Chinese Journal of Aeronautics, 2010, 23(3): 320-326.
[102] SMITH C A, BETZINA M D. Aerodynamic loads induced by a rotor on a body of revolution[J]. Journal of American Helicopter Society, 1986, 31(1): 29-36.
[103] LORBER P F, EGOLF T A. An unsteady helicopter rotor-fuselage aerodynamic interaction analysis[J]. Journal of the American Helicopter Society, 1990, 35(3): 32-42.
[104] CROUSE G L, LEISHMAN J G, BI N. Theoretical and experimental study of unsteady rotor/body aerodynamic interactions[J]. Journal of the American Helicopter Society, 1992, 37(1): 55-65.
[105] MAVRIS D N, KOMERATH N M, MCMAHON H M. Prediction of aerodynamic rotor-airframe interactions in forward flight[J]. Journal of the American Helicopter Society, 1989, 34(4): 37-46.
[106] KOMERATH N M, MAVRIS D M, LIOU S G. Prediction of unsteady pressure and velocity over a rotorcraft in forward flight[J]. Journal of Aircraft, 1991, 28(8): 509-516.
[107] QUACKENBUSH T R, LAM C M G, BLISS D B. Vortex methods for the computational analysis of rotor/body interaction[J]. Journal of the American Helicopter Society, 1994, 39(4): 14-24.
[108] AFFES H, XIAO Z, CONLISK A, et al. The three-dimensional boundary layer flow due to a rotor-tip vortex[C]//23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Reston: AIAA, 1993: 3081-3081.
[109] BERRY J D, ALTHOFF S L. Inflow velocity perturbations due to fuselage effects in the presence of a fully interactive wake[C]//The 46th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1990: 1111-1120.
[110] NORMAN T R, YAMAUCHI G K. Full-scale investigation of aerodynamic interactions between a rotor and a fuselage[C]//Proceedings of the 47th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1991: 461-486.
[111] LIOU S G, KOMERATH N M, MCMAHON H M. Velocity measurement of airframe effects on a rotor in low-speed forward flight[J]. Journal of Aircraft, 1989, 26(4): 340-348.
[112] LIOU S G, KOMERATH N M, MCMAHON H M. Measurement of the interaction between a rotor tip-vortex and a cylinder[J]. AIAA Journal, 1990, 28(6): 975-981.
[113] BRAND A G, MCMAHON H M, KOMERATH N M. Surface pressure measurements on a body subject to vortex wake interaction[J]. AIAA Journal, 1989, 27(5): 569-574.
[114] RAJAGOPALAN R G, MATHUR S R. Three dimensional analysis of a rotor in forward flight[J]. Journal of the American Helicopter Society, 1993, 38(3): 14-25.
[115] LEISHMAN J G, BI N. Measurement of a rotor flowfield and the effects on a fuselage in forward flight[J]. Vertica, 1990, 14(3): 401-415.
[116] LEISHMAN J G, BI N, SAMAK D K. Investigation of aerodynamic interactions between a rotor and a fuselage in forward flight[C]//The 45th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1989: 591-601.
[117] LEISHMAN J G, BI N. Investigation of rotor tip vortex interactions with a body[J]. Journal of Aircraft, 1993, 30(6): 879-888.
[118] BHAGWAT M J. Mathematical modelling of the transient dynamics of helicopter rotor wakes using a time-accurate free-vortex method[D]. Maryland: University of Maryland, 2001: 22-95.
[119] WACHSPRESS D A, QUACKENBUSH T R, BOSCHITSCH A H. Rotorcraft interactional aerodynamics calculations with fast vortex/fast panel methods[C]//The 56th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 2000: 51-71.
[120] LIGHT J S. Results from an XV-15 rotor test in the national full-scale aerodynamics complex[C]//Annual Forum, 53rd. Fairfax Virginia: AHS, 1997: 231-239.
[121] KENNETH W. Integrated flight-propulsion control specifications: accounting for two way coupling: AIAA-1994-3613[R]. Reston: AIAA, 1994.
[122] ROCK S M, NEIGHBORS K. Integrated flight/propulsion control for helicopters[J]. Journal of the American Helicopter Society, 1994, 39(3): 34-42.
[123] WARMBRODT W. Development of a helicopter rotor-propulsion system dynamics analysis: AIAA-1982-1087[R]. Reston: AIAA, 1982.
[124] BAILEY F J, Jr. A simplified theoretical method of determining the characteristics of a lifting rotor in forward flight: NACA Report 716[R]. Washington, D.C.: NACA, 1941.
[125] BALLIN M G. A high fidelity real-time simulation of a small turboshaft engine: NASA-TM-100991[R]. Washington, D.C.: NASA, 1988.
[126] AHMET D, ZHEN G, JONATHAN S L. A simplified dynamic model of the T700 turboshaft engine: NASA TM-105805[R]. Washington, D.C.: NASA, 1992.
[127] CHEN R T N. A simplified rotor system mathematical model for piloted flight dynamics simulation: NASA-TM-78575[R]. Washington, D.C.: NASA, 1979.
[128] PETER D T, BRUCE E, TINLING W, et al. A mathematical model of a single main rotor helicopter for piloted simulation: NASA TM-84281[R]. Washington, D.C.: NASA, 1982.
[129] THADDEUS T K. UH-60 black hawk engineering simulation model validation and proposed modifications: NASA CR-177360[R]. Washington, D.C.: NASA, 1987.
[130] KIM F D. Analysis of propulsion system dynamics in the validation of a high-order state space model of the UH-60: AIAA-1992-4150[R]. Reston: AIAA, 1992.
[131] THEODORE C R. Helicopter flight dynamics simulation with refined aerodynamic modeling[D]. Maryland: University of Maryland, 2000: 22-99.
[132] BAGAI A. Contributions to the mathematical modeling of rotor flow-fields using a pseudo-implicit free-wake analysis[D]. Maryland: University of Maryland, 1995: 20-88.
[133] THOMSON D G, BRADLEY R. An investigation of the stability of flight path constrained helicopter maneuvers by inverse simulation[C]//13th European Rotorcraft Forum. Arles: ERF, 1987: 122-142.
[134] HESS R A, GAO C, WANG S H. A generalized technique for inverse simulation applied to aircraft flight control[J]. Journal of Guidance, Control and Dynamics, 1991, 14(5): 920-926.
[135] 曹义华, 高正. 直升机机动飞行的数学模拟[J]. 飞行力学, 1990, 3(1):22-32. CAO Y H, GAO Z. Mathematical simulation of helicopter maneuver flight[J]. Flight Dynamics, 1990, 3(1): 22-32 (in Chinese).
[136] 陈仁良, 高正. 直升机机动飞行的逆模拟[J]. 空气动力学学报, 1999, 17(3): 339-345. CHEN R L, GAO Z. The inverse simulation of helicopter maneuver flight[J]. Acta Aerodynamica Sinica, 1999, 17(3): 339-345 (in Chinese).
[137] THOMSON D G, BRADLEY R. The principles and practical application of helicopter inverse simulation[J]. Simulation Theory and Practice, 1998, 6(1): 47-70.
[138] THOMSON D G, BRADLEY R. Mathematical definition of helicopter maneuvers[J]. Journal of the American Helicopter Society, 1997, 42(1-4): 307-309.
[139] LEACOCK G R, THOMSON D G. Helicopter handling qualities studies using pilot modeling and inverse simulation[C]//American Helicopter Society 54th Annual Forum. Fairfax Virginia: AHS, 1998: 1325-1336.
[140] CELI R. Optimization-based inverse simulation of a helicopter slalom maneuver[J]. Journal of Guidance, Control and Dynamics, 2000, 23(2): 289-297.
[141] CAMERON N, THOMSON D G, SMITH D J. Pilot modeling and inverse simulation for initial handling qualities assessment[J]. Aeronautical Journal, 2003, 107(1744): 511-520.
[142] 李建波, 高正. 基于逆仿真的直升机机动飞行科目数学模型及其应用[J]. 南京航空航天大学学报, 2003, 35(1): 1-5. LI J B, GAO Z. Mathematical modeling and its application for helicopter maneuver flight based on inverse simulation[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2003, 35(1): 1-5 (in Chinese).
[143] 吴伟. 直升机飞行动力学模型辨识与机动飞行研究[D]. 南京: 南京航空航天大学, 2010: 90-108. WU W. Study on the identification of the flight dynamics model of helicopter and maneuvering flight[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010: 90-108 (in Chinese).

Outlines

/