[1] BASKETT B J. Aeronautical design, performance specification, handing qualities requirements for military rotorcraft: ADS-33E-PRF[S]. Alabama: AMCOM, 2000.
[2] 高正, 陈仁良. 直升机飞行动力学[M]. 北京: 科学出版社, 2003: 24-42. GAO Z, CHEN R L. Helicopter dynamics[M]. Beijing: Science Press, 2003: 24-42 (in Chinese).
[3] JOHNSON W. Helicopter theory[M]. New Jersey: Princeton University Press, 1980: 23-902.
[4] SHERIDAN P F, SMITH R F. Interactional aerodynamics-a new challenge to helicopter technology[J]. Journal of the American Helicopter Society, 1980, 25(1): 3-21.
[5] PADFIELD G D. Helicopter flight dynamics: The theory and application of flying qualities and simulation modelling[M]. 2nd ed. Oxford: Blackwell Science Ltd, 1996: 23-500.
[6] PROUTY R W. 直升机性能及稳定性和操纵性[M]. 高正, 陈文轩, 译. 北京: 航空工业出版社, 1998: 24-27. PROUTY R W. Helicopter performance stability and control[M]. GAO Z, CHEN W X, translated. Beijing: Aviation Industry Press, 1998: 24-27 (in Chinese).
[7] BLAKE B B, ALANSKY I B. Stability and control of the YUH-61A[J]. Journal of the American Helicopter Society, 1977, 22(1): 2-10.
[8] KISIELOWSKI E, PERLMUTTER A A, TANG J. Stability and control handbook for helicopters: DCR-186[R]. Pennsylvania: Dynasciences Corp Blue Bell Pa, 1967.
[9] 佚名. 军用直升机飞行品质规范背景材料和使用说明[M]. 北京: 航空工业出版社, 1986: 15-128. YI M. Military helicopter flight quality specification background materials and instructions[M]. Beijing: Aviation Industrry Press, 1986: 15-128 (in Chinese).
[10] DOWELL E H, TANG D. Nonlinear aeroelasticity and unsteady aerodynamics[J]. AIAA Journal, 2002, 40(9): 1697-1707.
[11] STURISKY S H, LEWIS W D, SCHRAGE D P. Development and validation of a comprehensive real time AH-64 apache simulation model[C]//Proceedings of the 48th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1992: 1267-1280.
[12] ANDERSON W D. Rexor rotorcraft simulation model[M]. Florida: Eustis Directorate, 1976: 22-54.
[13] JOHNSON W A. Comprehensive analytical model of rotorcraft aerodynamics and dynamics: NASA-TM-81182/81183/81184[R]. Washington, D.C.: NASA, 1980.
[14] HILBERT K B. A mathematical model of UH-60 helicopter: NASA-TM-85890[R]. Washington, D.C.: NASA, 1984.
[15] PHILIPS J D. A mathematical model of SH-3G helicopter: NASA-TM-84316[R]. Washington, D.C.: NASA, 1980.
[16] HACKETT W E, GERNETT T S, BOREK B V. Mathematical model for the CH-47B helicopter capable of real time simulation of the full flight envelope: NASA-CR-166458[R]. Washington, D.C.: NASA, 1983.
[17] CHEN R T N. A simplified rotor system mathematical model for piloted flight dynamics simulation: NASA-TM-78575[R]. Washington, D.C.: NASA, 1979.
[18] CHEN R T N. Effects of primary rotor parameters on flapping dynamics: NASA-TP-1431[R]. Washington, D.C.: NASA,1980.
[19] JOHNSON W A. Comprehensive analytical model of rotorcraft aerodynamics and dynamics. Part 1: Analysis s development: AD-A0900513[R]. Washington, D.C.: AD, 1980.
[20] TALBOT P D, TINLING B E, DECKER W A, et al. A mathematical model of a single main rotor helicopter for piloted simulation: NASA-TM-84281[R]. Washington, D.C.: NASA, 1982.
[21] SHERIDAN P F, ROBINSON C, SHAW J DR. Mathematical modeling for helicopter simulation of low speed, low altitude and steeply descending flight: NASA-CR-199385[R]. Washington, D.C.: NASA, 1982.
[22] HOWLETT J J. UH-60A black hawk engineering simulation program: NASA-CR-166309[R]. Washington, D.C.: NASA, 1981.
[23] BALLIN M G. Validation of a real-time engineering simulation of the UH-60A helicopter: NASA-TM-88360[R]. Washington, D.C.: NASA, 1987.
[24] SARATHY S, MURTHY U R. An advanced rotorcraft flight simulation model: parallel implementation and performance analysis: AIAA-1993-3550[R]. Reston: AIAA, 1993.
[25] KIM F D, CELI R, TISHLER N B. High order state space simulation models of helicopter flight mechanics[J]. Journal of the American Helicopter Society, 1993, 38(4): 16-27.
[26] LEWIS M S, AIKEN E W. Piloted simulation of one-on-one helicopter air combat at NOE flight levels: NASA-TM-866686[R]. Washington, D.C.: NASA, 1985.
[27] HEFFLEY R K. Minimum-complexity helicopter simulation mathematical model: NASA-CR-177476[R]. Washington, D.C.: NASA, 1988.
[28] TALBOT P D, CORLISS L D. A mathematical force and moment model of a UH-1H helicopter for flight dynamic simulation: NASA-TM-73254[R]. Washington, D.C.: NASA, 1977.
[29] HE C J, LEWIS W D. A parametric study of real time mathematical modeling incorporating dynamic wake and elastic blades[C]//The 48th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1992: 1181-1196.
[30] DAVIS J M. Rotorcraft simulation with aeroelastic rotor and improved aerodynamics representation: USAAMRDL-TR-74-10[R]. Maryland: ARL, 1974.
[31] CHEN R T N, LEBACQZ J V, AIKEN E W. Helicopter mathematical models and control law development for handling qualities: NASA-CR-249[R].Washington, D.C.: NASA, 1988.
[32] MILLER D G, WHITE F. A treatment of the impact of rotor-fuselage coupling on helicopter handling qualities[C]//Proceedings of the 43rd Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1987: 631-644.
[33] PITT D M, PETER D A. Theoretical prediction of dynamic inflow derivatives[J]. Vertica, 1981, 5(1): 21-34.
[34] ZHAO X, CURTISS H C. A linearized model of helicopter dynamics including correlation with flight test[C]//Proceedings of the Second International Conference on Rotorcraft Basic Research. Maryland: College Park, 1988: 51-83.
[35] TAKAHASHI M D. A flight dynamic helicopter mathematical model with a single flap-lag-torsion main rotor: NASA-TM-102267[R]. Washington, D.C.: NASA, 1990.
[36] BALLIN M G. Validation of a real-time engineering simulation of the UH-60A helicopter: NASA-TM-88360[R]. Washington, D.C.: NASA, 1987.
[37] VON G W. Dynamic inflow modeling for helicopter rotors and its influence on the prediction of Cross-coupling[C]//Proceedings of the American Helicopter Society Aeromechanics Specialist Conference. Fairfax Virginia: AHS, 1995: 21-31.
[38] CHAIMOVITCH M, ROSEN A, RAND O, et al. Investigation of the flight mechanics simulation of a hovering helicopter[C]//Proceedings of the 48th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1992: 1237-1256.
[39] DUVAL R. A real-time blade element helicopter simulation for handling qualities analysis[C]//Proceedings of the 15th European Rotorcraft Forum. Amsterdam: ERF, 1989: 766-785.
[40] HE C, DUVAL R. An unsteady airload model with dynamic stall for rotorcraft simulation[C]//Proceedings of the 50th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1994: 931-948.
[41] HE C. Development and application of a generalized dynamic wake theory for lifting rotors[J]. Building Service Engineering, 1989, 22(22): 95-101.
[42] PETER D A, BOYD D, He C. Finite-state induced-flow model for rotors in hover and forward flight[J]. Journal of the American Helicopter Society, 1989, 34(4): 5-17.
[43] KIM F D, CELI R, TISCHLER M B. Forward flight trim calculation and frequency response validation of a high-order helicopter simulation model[J]. Journal of Aircraft, 1993, 30(6): 854-863.
[44] TURNOUR S R, CELI R. Modeling of flexible rotor blades for helicopter flight dynamics applications[J]. Journal of the American Helicopter Society, 1996, 41(1): 52-66.
[45] TURNOUR S R, CELI R. Effects of unsteady aerodynamics on the flight dynamics of an articulated rotor helicopter[J]. Journal of Aircraft, 1997, 34(2): 187-196.
[46] 杨超, 洪冠新, 宋寿峰. 直升机飞行动力学放射非线性系统建模[J]. 北京航空航天大学学报, 1997, 23(4): 471-476. YANG C, HONG G X, SONG S F. Affine nonlinear mathematical model for helicopter flight dynamics[J]. Journal of Beijing University of Aeronautics and Astronautics, 1997, 23(4): 471-476 (in Chinese).
[47] 陈仁良. 直升机飞行动力学数学建模及机动性研究[D]. 南京: 南京航空航天大学, 1998: 25-56. CHEN R L. A mathematical model of helicopter flight dynamics and investigation of maneuverability[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 1998: 25-56 (in Chinese).
[48] 孙传伟. 直升机飞行动力学模型与飞行品质评估[D]. 南京: 南京航空航天大学, 2001: 20-66. SUN C W. Helicopter flight dynamics model and flight quality evaluation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2001: 20-66 (in Chinese).
[49] 李建波, 高正. 直升机机动飞行仿真的气动建模及试验研究[J]. 航空学报, 2003, 24(2): 116-118. LI J B, GAO Z. Aerodynamic modeling and experiment for simulation of helicopter maneuver flight[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(2): 116-118 (in Chinese).
[50] SPOLDI S, RUCKEL P. High fidelity helicopter simulation using free wake, lifting line tail, and blade element tail rotor models[C]//Proceedings of the 59th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 2003: 1880-1886.
[51] WACHSPRESS D A, QUACKENBUSH T R, BOSCHITSCH A H. First-principles free-vortex wake analysis for helicopters and tiltrotors[C]//Proceedings of the 59th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 2003: 1763-1786.
[52] HORN J F, BRIDGES D O, WACHSPRESS D A, et al. Implementation of a free-vortex wake model in real-time simulation of rotorcraft[J]. Journal of Aerospace Computing, Information, and Communication, 2006, 3(3): 93-107.
[53] RIBERA M. Helicopter flight dynamics simulation with a time-accurate free-vortex wake model[D]. Maryland: University of Maryland, 2007: 33-158.
[54] D’ANDREA A. Development of a multi-processor unstructured panel code coupled with CVC free wake model for advanced analysis of rotorcrafts and tiltrotors[C]//American Helicopter Society 64th Annual Forum. Fairfax Virginia: AHS, 2008: 120-139.
[55] 李攀. 旋翼非定常自由尾迹模型及高置信度直升机飞行动力学建模研究[D]. 南京: 南京航空航天大学, 2010: 20-99. LI P. Study on unsteady free wake model of rotor and high reliability helicopter flight dynamics modeling[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010: 20-99 (in Chinese).
[56] RICHARD B, LEWIS W D. Huey cobra maneuvering investigations[C]//The 26th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1970: 158-178.
[57] RODGER L, FINNESTEAD M W, WILLIAM J. C. Engineering flight test: AH-1G helicopter (Hueycobra) performance: AD-882220[R]. Washington, D.C.: AD, 1971.
[58] GEORGE M, DONALD Y. BROADHURST G, et al. Utility tactical transport aircraft system (UTTAS) maneuver criteria: AD-902707[R]. Washington, D.C.: AD, 1972.
[59] WOOD T L, LIVINGSTON C L. An energy method for prediction of helicopter maneuverability: AD-A021266[R]. Washington, D.C.: AD, 1971.
[60] WELLS C D, Wood T L. Maneuverability-theory and application[J]. Journal of the American Helicopter Society, 1973, 18(1): 10-22.
[61] WOOD T L, FORD D G, BRIGMM G H. Maneuver criteria evaluation program: AD-782207[R]. Washington, D.C.: AD, 1974.
[62] WOOD T L, WAAK T. Improved maneuver criteria evaluation program: AD-A080408[R]. Washington, D.C.: AD, 1979.
[63] THOMSON D G, BRADLEY R. An investigation of the stability of flight path constrained helicopter maneuvers by inverse simulation[C]//13th European Rotorcraft Forum. Arles. France: ERF, 1987: 121-141.
[64] 曹义华. 直升机的机动飞行研究[D]. 南京: 南京航空航天大学, 1990: 22-95. CAO Y H. Research on helicopter maneuver flight[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 1990: 22-95 (in Chinese).
[65] EVERSMAN W, TEWAI A. A reduced cost rational-function approximation for unsteady aerodynamics: AIAA-1990-1166[R]. Reston: AIAA, 2013.
[66] TYLER J C, LEISHMAN J G. Analysis of pitch and plunge effects on unsteady airfoil behavior[J]. Journal of the American Helicopter Society, 1992, 37(3): 68-82.
[67] YEN J G, YUCE M. Correlation of pitch-link loads in deep stall on bearingless rotors[J]. Journal of the American Helicopter Society, 1992, 37(4): 4-15.
[68] MELLO A F, RAND O. Unsteady frequency domain analysis of helicopter non-rotating lifting surfaces[J]. Journal of the American Helicopter Society, 1991, 36(2): 70-80.
[69] SHIN C, LOURENCO L, DOMMELEN L V. Unsteady flow past an airfoil pitching at a constant rate[J]. AIAA Journal, 1992, 30(5): 1153-1161.
[70] BEDDOES T S. A synthesis of unsteady aerodynamic effects including stall hysteresis[J]. Vertica, 1976, 1(2): 113-123.
[71] GRAY L. Wind tunnel test of thin airfoils oscillating near stall: USAAVLABS-TR68-89[R]. Maryland: ARL, 1968.
[72] AZUMA A, OBATA A. Induced flow variation of helicopter rotor operating in the vortex ring state[J]. Journal of Aircraft, 1968, 5(4): 381-386.
[73] TRAN C T, PITOT D. Semi-empirical model for the dynamic stall of airfoil of airfoils in view of the application to the calculation of the responses of a helicopter blade in forward flight[J]. Vertica, 1981, 5(1): 35-53.
[74] TRUONG V K. A 2-D dynamic stall model based on a half bifurcation[C]//Proceedings of the 19th European Rotorcraft Forum. Cernobbio: ERF, 1993: 23-23.
[75] LEISHMAN J G, BEDDOES T S. A generalized model for airfoil unsteady aerodynamic behaviour and dynamic stall using the indicial method[C]//Proceedings of 42nd Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1986: 243-265.
[76] CHEN R T N. A survey of nonuniform inflow models for rotorcraft flight dynamics and control applications[J]. Vertica, 1990, 14(2): 147-184.
[77] LEISHMAN J G. Principles of helicopter aerodynamics[M]. 2nd ed. New York: Cambridge University Press, 2006: 78-198.
[78] COLEMAN R P, FEINGOLD A M, STEMPIN C W. Evaluation of the induced-velocity field of an idealized helicopter rotor: NACA-ARR-L5E10[R]. Washington, D.C.: NACA, 1945.
[79] CARPENTER P J, FRIEDOVICH B. Effect of a rapid blade-pitch increase on the thrust and induced-velocity response of a full-scale helicopter rotor: NACA-TN-3044[R]. Washington, D.C.: NACA, 1953.
[80] BAROCELA E B, PETER D A, KROTHAPALLI K R, et al. The effect of wake distortion on rotor inflow gradients and off-axis coupling: AIAA-1997-3579[R]. Reston: AIAA, 1997.
[81] KROTHAPALLI K R, PRASAD J V, PETER D A. Helicopter rotor dynamic inflow modeling for maneuvering flight[C]//Proceedings of the 55th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1999: 498-509.
[82] ZHAO J, PRASAD J V, PETER D A. Investigation of wake curvature dynamics for helicopter maneuvering flight simulation[C]//Proceedings of the 59th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 2003: 1887-1901.
[83] ZHAO J. Dynamic wake distortion model for helicopter maneuvering flight[D]. Atlanta: Georgia Institute of Technology, 2005: 18-37.
[84] ROSEN A, ISSER A. A model of the unsteady aerodynamics of a hovering helicopter rotor that includes variations of the wake geometry[J]. Journal of the American Helicopter Society, 1995, 40(3): 6-16.
[85] ROSEN A, ISSER A. A new model of rotor dynamics during pith and roll of a hovering helicopter[J]. Journal of the American Helicopter Society, 1995, 40(3): 17-28.
[86] KELLER J D. An investigation of helicopter dynamic coupling using an analytical model[J]. Journal of the American Helicopter Society, 1996, 41(4): 322-330.
[87] KELLER J D, CURTISS H C. A critical examination of the methods to improve the off-axis response prediction of helicopters[C]//Proceedings of the 54th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1998: 1134-1147.
[88] BHAGWAT M J. Mathematical modelling of the transient dynamics of helicopter rotor wakes using a time-accurate free-vortex methods[D]. Maryland: University of Maryland, 2001:22-97.
[89] 徐进. 直升机大机动飞行中旋翼非定常空气动力研究[D]. 南京: 南京航空航天大学, 2007: 25-95. XU J. Study on unsteady aerodynamic force of rotor in helicopter maneuvering flight[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007: 25-95.
[90] CRIMI P. Theoretical prediction of the flow in the wake of a helicopter rotor: BB-1994-5-1[R]. New York: Cornell Aeronautical Laboratory, 1965.
[91] LEE D J, NA S U. Predictions of airloads and wake geometry for slowly starting rotor blades in hovering flight by using time marching free vortex blob method[C]//Annual Forum, 52nd. Fairfax Virginia: AHS, 1996: 532-540.
[92] LEE D J, NA S U. Numerical simulations of wake structure generated by rotating blades using a time marching free vortex blob method[J]. European Journal of Mechanics/B Fluids, 1999, 18(1): 147-159.
[93] GREENGARD L, ROKHLIN V. A fast algorithm for particle simulations[J]. Journal of Computational Physics, 1987, 73(2): 325-348.
[94] BROWN R E. Rotor wake modeling for flight dynamic simulation of helicopters[J]. AIAA Journal, 2000, 38(1): 57-63.
[95] BROWN R E, LINE A J. Efficient high-resolution wake modeling using the vorticity transport equation[J]. AIAA Journal, 2005, 43(7): 1434-1443.
[96] HE C, ZHAO J. Modeling rotor wake dynamics with viscous vortex particle method[J]. AIAA Journal, 2009, 47(4): 902-915.
[97] ZHAO J, HE C. A viscous vortex particle model for rotor wake and interference analysis[J]. Journal of the American Helicopter Society, 2010, 55(1): 1-14.
[98] CAO Y H, YU Z Q, SU Y, Combined free wake/CFD methodology for predicting transonic rotor flow in hover[J]. Chinese Journal of Aeronautics, 2002, 15(2): 65-71.
[99] WHITEHOUSE G R, TADGHIGHI H, Investigation of hybrid grid-based computational fluid dynamics methods for rotorcraft flow analysis[J]. Journal of the American Helicopter Society, 2011, 56(3): 032004-1~032004-10.
[100] ZHAO J, HE C, Rotor blade structural loads analysis using coupled CSD/CFD/VVPM[C]//American Helicopter Society 69th Annual Forum. Fairfax Virginia: AHS, 2013: 40-62.
[101] LI P, CHEN R L. A mathematical model for helicopter comprehensive analysis[J]. Chinese Journal of Aeronautics, 2010, 23(3): 320-326.
[102] SMITH C A, BETZINA M D. Aerodynamic loads induced by a rotor on a body of revolution[J]. Journal of American Helicopter Society, 1986, 31(1): 29-36.
[103] LORBER P F, EGOLF T A. An unsteady helicopter rotor-fuselage aerodynamic interaction analysis[J]. Journal of the American Helicopter Society, 1990, 35(3): 32-42.
[104] CROUSE G L, LEISHMAN J G, BI N. Theoretical and experimental study of unsteady rotor/body aerodynamic interactions[J]. Journal of the American Helicopter Society, 1992, 37(1): 55-65.
[105] MAVRIS D N, KOMERATH N M, MCMAHON H M. Prediction of aerodynamic rotor-airframe interactions in forward flight[J]. Journal of the American Helicopter Society, 1989, 34(4): 37-46.
[106] KOMERATH N M, MAVRIS D M, LIOU S G. Prediction of unsteady pressure and velocity over a rotorcraft in forward flight[J]. Journal of Aircraft, 1991, 28(8): 509-516.
[107] QUACKENBUSH T R, LAM C M G, BLISS D B. Vortex methods for the computational analysis of rotor/body interaction[J]. Journal of the American Helicopter Society, 1994, 39(4): 14-24.
[108] AFFES H, XIAO Z, CONLISK A, et al. The three-dimensional boundary layer flow due to a rotor-tip vortex[C]//23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Reston: AIAA, 1993: 3081-3081.
[109] BERRY J D, ALTHOFF S L. Inflow velocity perturbations due to fuselage effects in the presence of a fully interactive wake[C]//The 46th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1990: 1111-1120.
[110] NORMAN T R, YAMAUCHI G K. Full-scale investigation of aerodynamic interactions between a rotor and a fuselage[C]//Proceedings of the 47th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1991: 461-486.
[111] LIOU S G, KOMERATH N M, MCMAHON H M. Velocity measurement of airframe effects on a rotor in low-speed forward flight[J]. Journal of Aircraft, 1989, 26(4): 340-348.
[112] LIOU S G, KOMERATH N M, MCMAHON H M. Measurement of the interaction between a rotor tip-vortex and a cylinder[J]. AIAA Journal, 1990, 28(6): 975-981.
[113] BRAND A G, MCMAHON H M, KOMERATH N M. Surface pressure measurements on a body subject to vortex wake interaction[J]. AIAA Journal, 1989, 27(5): 569-574.
[114] RAJAGOPALAN R G, MATHUR S R. Three dimensional analysis of a rotor in forward flight[J]. Journal of the American Helicopter Society, 1993, 38(3): 14-25.
[115] LEISHMAN J G, BI N. Measurement of a rotor flowfield and the effects on a fuselage in forward flight[J]. Vertica, 1990, 14(3): 401-415.
[116] LEISHMAN J G, BI N, SAMAK D K. Investigation of aerodynamic interactions between a rotor and a fuselage in forward flight[C]//The 45th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 1989: 591-601.
[117] LEISHMAN J G, BI N. Investigation of rotor tip vortex interactions with a body[J]. Journal of Aircraft, 1993, 30(6): 879-888.
[118] BHAGWAT M J. Mathematical modelling of the transient dynamics of helicopter rotor wakes using a time-accurate free-vortex method[D]. Maryland: University of Maryland, 2001: 22-95.
[119] WACHSPRESS D A, QUACKENBUSH T R, BOSCHITSCH A H. Rotorcraft interactional aerodynamics calculations with fast vortex/fast panel methods[C]//The 56th Annual Forum of the American Helicopter Society. Fairfax Virginia: AHS, 2000: 51-71.
[120] LIGHT J S. Results from an XV-15 rotor test in the national full-scale aerodynamics complex[C]//Annual Forum, 53rd. Fairfax Virginia: AHS, 1997: 231-239.
[121] KENNETH W. Integrated flight-propulsion control specifications: accounting for two way coupling: AIAA-1994-3613[R]. Reston: AIAA, 1994.
[122] ROCK S M, NEIGHBORS K. Integrated flight/propulsion control for helicopters[J]. Journal of the American Helicopter Society, 1994, 39(3): 34-42.
[123] WARMBRODT W. Development of a helicopter rotor-propulsion system dynamics analysis: AIAA-1982-1087[R]. Reston: AIAA, 1982.
[124] BAILEY F J, Jr. A simplified theoretical method of determining the characteristics of a lifting rotor in forward flight: NACA Report 716[R]. Washington, D.C.: NACA, 1941.
[125] BALLIN M G. A high fidelity real-time simulation of a small turboshaft engine: NASA-TM-100991[R]. Washington, D.C.: NASA, 1988.
[126] AHMET D, ZHEN G, JONATHAN S L. A simplified dynamic model of the T700 turboshaft engine: NASA TM-105805[R]. Washington, D.C.: NASA, 1992.
[127] CHEN R T N. A simplified rotor system mathematical model for piloted flight dynamics simulation: NASA-TM-78575[R]. Washington, D.C.: NASA, 1979.
[128] PETER D T, BRUCE E, TINLING W, et al. A mathematical model of a single main rotor helicopter for piloted simulation: NASA TM-84281[R]. Washington, D.C.: NASA, 1982.
[129] THADDEUS T K. UH-60 black hawk engineering simulation model validation and proposed modifications: NASA CR-177360[R]. Washington, D.C.: NASA, 1987.
[130] KIM F D. Analysis of propulsion system dynamics in the validation of a high-order state space model of the UH-60: AIAA-1992-4150[R]. Reston: AIAA, 1992.
[131] THEODORE C R. Helicopter flight dynamics simulation with refined aerodynamic modeling[D]. Maryland: University of Maryland, 2000: 22-99.
[132] BAGAI A. Contributions to the mathematical modeling of rotor flow-fields using a pseudo-implicit free-wake analysis[D]. Maryland: University of Maryland, 1995: 20-88.
[133] THOMSON D G, BRADLEY R. An investigation of the stability of flight path constrained helicopter maneuvers by inverse simulation[C]//13th European Rotorcraft Forum. Arles: ERF, 1987: 122-142.
[134] HESS R A, GAO C, WANG S H. A generalized technique for inverse simulation applied to aircraft flight control[J]. Journal of Guidance, Control and Dynamics, 1991, 14(5): 920-926.
[135] 曹义华, 高正. 直升机机动飞行的数学模拟[J]. 飞行力学, 1990, 3(1):22-32. CAO Y H, GAO Z. Mathematical simulation of helicopter maneuver flight[J]. Flight Dynamics, 1990, 3(1): 22-32 (in Chinese).
[136] 陈仁良, 高正. 直升机机动飞行的逆模拟[J]. 空气动力学学报, 1999, 17(3): 339-345. CHEN R L, GAO Z. The inverse simulation of helicopter maneuver flight[J]. Acta Aerodynamica Sinica, 1999, 17(3): 339-345 (in Chinese).
[137] THOMSON D G, BRADLEY R. The principles and practical application of helicopter inverse simulation[J]. Simulation Theory and Practice, 1998, 6(1): 47-70.
[138] THOMSON D G, BRADLEY R. Mathematical definition of helicopter maneuvers[J]. Journal of the American Helicopter Society, 1997, 42(1-4): 307-309.
[139] LEACOCK G R, THOMSON D G. Helicopter handling qualities studies using pilot modeling and inverse simulation[C]//American Helicopter Society 54th Annual Forum. Fairfax Virginia: AHS, 1998: 1325-1336.
[140] CELI R. Optimization-based inverse simulation of a helicopter slalom maneuver[J]. Journal of Guidance, Control and Dynamics, 2000, 23(2): 289-297.
[141] CAMERON N, THOMSON D G, SMITH D J. Pilot modeling and inverse simulation for initial handling qualities assessment[J]. Aeronautical Journal, 2003, 107(1744): 511-520.
[142] 李建波, 高正. 基于逆仿真的直升机机动飞行科目数学模型及其应用[J]. 南京航空航天大学学报, 2003, 35(1): 1-5. LI J B, GAO Z. Mathematical modeling and its application for helicopter maneuver flight based on inverse simulation[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2003, 35(1): 1-5 (in Chinese).
[143] 吴伟. 直升机飞行动力学模型辨识与机动飞行研究[D]. 南京: 南京航空航天大学, 2010: 90-108. WU W. Study on the identification of the flight dynamics model of helicopter and maneuvering flight[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010: 90-108 (in Chinese). |