Electronics and Electrical Engineering and Control

Fault-tolerant translational control for spacecraft formation flying with collision avoidance requirement

  • MA Guangfu ,
  • DONG Hongyang ,
  • HU Qinglei
Expand
  • 1. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China;
    2. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China

Received date: 2017-01-13

  Revised date: 2017-04-17

  Online published: 2017-04-17

Supported by

National Natural Science Foundation of China (61522301, 61633003)

Abstract

To solve the flying safety issues of spacecraft formation,including fault tolerance and obstacle/collision avoidance,a novel adaptive translational control method is proposed.Specifically,the proposed method combines the core ideas of artificial potential function guidance and sliding mode control method.A special artificial potential function is designed to encode the collision/obstacle avoidance requirement,and then a coordination controller is presented to enable the spacecraft formation to maintain the predetermined configuration while tracking a target,and to be able to avoid all possible collisions between members in formation or with respect to a non-cooperative obstacle.Furthermore,by introducing adaptive laws into the controller,the robustness of the closed-loop system is further improved in respect to external disturbances,parameter uncertainties and even severe actuator faults.Typical simulations are performed to illustrate the effectiveness of the proposed method.

Cite this article

MA Guangfu , DONG Hongyang , HU Qinglei . Fault-tolerant translational control for spacecraft formation flying with collision avoidance requirement[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(10) : 321129 -321129 . DOI: 10.7527/S1000-6893.2017.321129

References

[1] KAPILA V, SPARKS A G, BUFFINGTON J M, et al. Spacecraft formation flying:Dynamics and control[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(3):561-564.
[2] REN W, BEARD R. Decentralized scheme for spacecraft formation flying via the virtual structure approach[J].Journal of Guidance,Control, and Dynamics, 2004, 27(1):73-82.
[3] BREAD R W, LAWTON J, HOW J P. A coordination architecture for spacecraft formation control[J]. IEEE Transactions on Control Systems Technology, 2001, 9(6):777-790.
[4] WANG P K C, HADAEGH F Y. Coordination and control of multiple microspacecraft moving in formation[J]. Journal of the Astronautical Scineces, 1996, 44(3):315-335.
[5] CANUTO E, COLANGELO L, LOTUFO M, et al. Satellite-to-satellite attitude control of a long-distance spacecraft formation for the next generation gravity mission[J]. European Journal of Control, 2015, 25(5):1-16.
[6] ZHOU N, XIA Y Q. Coordination control design for formation reconfiguration of multiple spacecraft[J]. IET Control Theory and Applications, 2015, 9(15):2222-2231.
[7] 郑重, 宋申民. 考虑避免碰撞的编队卫星自适应协同控制[J]. 航空学报, 2013, 34(8):1934-1943. ZHENG Z, SONG S M. Adaptive coordination control of satellites within formation considering collision avoidance[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1934-1943(in Chinese).
[8] HU Q L, DONG H Y, ZHANG Y M, et al. Tracking control of spacecraft formation flying with collision avoidance[J]. Aerospace Science and Technology, 2015, 42:353-364.
[9] ZHANG D, SONG S, PEI R. Safe guidance for autonomous rendezvous and docking with a noncooperative target[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2010.
[10] VARMA S, KUMAR K D. Fault tolerant satellite attitude control using solar radiation pressure based on nonlinear adaptive sliding mode[J]. Acta Astronautica, 2009, 66(3-4):486-500.
[11] RUITER A D. A fault tolerant magnetic spin stabilizing controller for JC2Sat-FF mission[J]. Acta Astronautica, 2011, 68(1-2):160-171.
[12] JIN J, KO S, RYOO C K. Fault tolerant control for satellites with four reaction wheels[J]. Control Engineering Practice, 2008, 16(10):1250-1258.
[13] CAI W, LIAO X, SONG D Y. Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2012, 31(5):1456-1463.
[14] XIAO B, HU Q, ZHANG Y. Finite-time attitude tracking of spacecraft with fault-tolerant capability[J]. IEEE Transactions on Control Systems Technology, 2015, 23(4):1338-1350.
[15] DONG H Y, HU Q L, MA G F. Dual-quaternion based fault-tolerant control for spacecraft formation flying with finite-time convergence[J]. ISA Transactions, 2016, 61(99):87-94.
[16] SINGLA P, SUBBARAO K, JUNKINS J L. Adaptive output feedback control for spacecraft rendezvous and docking under measurement uncertainty[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(4):892-902.
[17] KRISTIANSEN R, NICKLASSON P J. Spacecraft formation flying:A review and new results on state feedback control[J]. Acta Astronautica, 2009, 65(11-12):1537-1552.
[18] MURUGESAN S, GOEL P S. Fault-tolerant spacecraft attitude control system[J]. Sadhana, 1987, 11(1-2):233-261.
[19] RIMON E, KODITSCHEK D E. Exact robot navigation using artificial potential functions[J]. IEEE Transactions on Robotics and Automation, 1992, 8(5):501-518.
[20] BADAWY A, MCINNES C R. Small spacecraft formation using potential function[J]. Acta Astronautica, 2009, 65(11-12):1783-1788.
[21] GAZI V, ORDONEZ R. Target tracking using artificial potentials and sliding mode control[J]. International Journal of Control, 2007, 80(10):1626-1635.
[22] ZHANG F. The schur complement and its applications[M]. New York:Springer, 2006:17-46.
[23] LIU X F, LU P. Solving nonconvex optimal control problems by convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):750-765.

Outlines

/