ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Dynamic stall suppression for rotor airfoil based on inflatable leading edge technology
Received date: 2016-09-14
Revised date: 2016-11-22
Online published: 2016-11-24
Supported by
National Natural Science Foundation of China (11472223,11202166)
The occurrence of dynamic stall will result in high vibration torque loads and limit the flight envelope of a helicopter at high speed and load. Through the method of computational fluid dynamics (CFD), dynamic stall suppression for SC1095 helicopter rotor airfoil based on inflatable leading edge (ILE) technology is studied. The control mechanism of dynamic stall suppression and the effect of structure and inflating process of ILE are analyzed. The result shows that the dynamic stall suppression method based on ILE is effective. The bigger the expansion of the ILE,the better the effect of the ILE on dynamic stall suppression. However, if the ILE is too great, the effect will become weak. If the expansion of the ILE reaches the maximum when the airfoil pitches to the maximum angle of attack,the best control performance can be achieved. The duration of the maximum expansion state of the ILE has minor effect on the control performance. The angle of attack at which the ILE starts to swell has a great effect on the control ability. The position which connects the ILE and the airfoil has a great effect on dynamic stall suppression. A longer fairing section of the ILE has a better effect on dynamic stall suppression.
XU Heyong , XING Shilong , YE Zhengyin , MA Mingsheng . Dynamic stall suppression for rotor airfoil based on inflatable leading edge technology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(6) : 120799 -120799 . DOI: 10.7527/S1000-6893.2016.0308
[1] EKATERINARIS J A, CHANDRASEKHARA M S, PLATZER M F. Recent development in dynamic stall measurements, computations and control: AIAA-2005-1296[R]. Reston: AIAA, 2005.
[2] CHANDRASEKHARA M S, WILDER M C, CARR L W. Compressible dynamic stall control: A comparison of different approaches: AIAA-1999-3122[R]. Reston: AIAA, 1999.
[3] MARTIN P, WILSON J, BERRY J, et al. Passive control of compressible dynamic stall: AIAA-2008-7506[R]. Reston: AIAA, 2008.
[4] MAI H, DIETZ G, GEISSLER W, et al. Dynamic stall control by leading-edge vortex generators[J]. Journal of the American Helicopter Society, 2008, 53(1): 26-36.
[5] PAPE A L, COSTES M, RICHEZ F, et al. Dynamic stall control using deployable leading-edge vortex generators[J]. AIAA Journal, 2012, 50(10): 2135-2145.
[6] RAJU R, MITTAL R, CATTAFESTA L. Dynamics of airfoil separation control using zero-net mass-flux forcing[J]. AIAA Journal, 2008, 46(12): 3103-3115.
[7] DENG X, XIA Z X, LUO Z B, et al. Vector-adjusting characteristic of dual-synthetic-jet actuator[J]. AIAA Journal, 2015, 53(3): 794-797.
[8] 罗振兵, 夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展, 2005, 35(2): 221-234. LUO Z B, XIA Z X. Advances in synthetic jet technology and applications in flow control[J]. Advances in Mechanics, 2005, 35(2): 221-234 (in Chinese).
[9] ZHAO G Q, ZHAO Q J. Parametric analyses for synthetic jet control on separation and stall over rotor airfoil[J]. Chinese Journal of Aeronautics, 2014, 27(5): 1051-1061.
[10] ZHAO G Q, ZHAO Q J, GU Y S, et al. Experimental investigations for parametric effects of dual synthetic jets on delaying stall of a thick airfoil[J]. Chinese Journal of Aeronautics, 2016, 29(2): 346-357.
[11] POST M L, CORKE T C. Separation control using plasmas actuators-stationary and oscillating airfoils: AIAA-2004-0841[R]. Reston: AIAA, 2004.
[12] CORKE T C, POST M L. Overview of plasma flow control concepts, optimization, and applications: AIAA-2005-0563[R]. Reston: AIAA, 2005.
[13] POST M L, CORKE T C. Separation control using plasma actuators: Dynamic stall vortex control on oscillating airfoil[J]. AIAA Journal, 2006, 44(12): 3125-3135.
[14] 李应红, 吴云, 梁华, 等. 提高抑制流动分离能力的等离子体冲击流动控制原理[J]. 科学通报,2010, 55(31): 3060-3068. LI Y H, WU Y, LIANG H, et al. The mechanism of plasma shock flow control for enhancing flow separation control capability[J]. Chinese Science Bulletin, 2010, 55(31): 3060-3068 (in Chinese).
[15] BARLAS T K, VAN KUIK G A M. Review of state of the art in smart rotor control research for wind turbines[J]. Progress in Aerospace Sciences, 2010, 46(1): 1-27.
[16] STRAUB F K. A feasibility study of using smart materials for rotor control[J]. Smart Materials and Structures, 1996, 5(1): 1-10.
[17] GEISSLER W, DIETZ G, MAI H, et al. Dynamic stall control investigation on a full size chord blade section[C]//30th European Rotorcraft Forum. Cologne: German Aerospace Center (DLR), 2004.
[18] GEISSLER W, DIETZ G, MAI H. Dynamic stall on a supercritical airfoil[C]//29th European Rotorcraft Forum. Cologne: German Aerospace Center (DLR), 2003.
[19] WERNICKE K G, WERNICKE R K. Inflatable wing leading edges for high life and deicing: NASA Tech Briefs[R]. Washington, D.C.: NASA, 2000.
[20] 蒋跃文, 叶正寅, 张正科. 充气结构与流场的耦合求解方法[J]. 力学学报, 2010, 42(1): 1-7. JIANG Y W, YE Z Y, ZHANG Z K. Model of inflatable structure/fluid interaction for variable leading edge[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(1): 1-7 (in Chinese).
[21] MCALISTER K W, PUCCI S L, MCCROSKEY W J, et al. Experimental study of dynamic stall on advanced airfoil section: NASA-TM-84245-VOL-2[R]. Washington, D.C.: NASA Ames Research Center, 1982.
/
〈 | 〉 |