Material Engineering and Mechanical Manufacturing

Interferometric 3D imaging for space rotating targets in wideband radar

  • SUN Yuxue ,
  • LUO Ying ,
  • ZHANG Qun ,
  • LIN Yongzhao ,
  • CHEN Chunhui
Expand
  • 1. Information and Navigation College, Air Force Engineering University, Xi'an 710077, China;
    2. Collaborative Innovation Center of Information Sensing and Understanding, Xi'an 710077, China;
    3. Key Laboratory for Radar Signal Processing, Xidian University, Xi'an 710071, China

Received date: 2016-05-04

  Revised date: 2016-11-04

  Online published: 2016-11-15

Supported by

National Natural Science Foundation of China (61571475, 61471386); Science Foundation for Post Doctorate of China (2015M570815)

Abstract

3D imaging for space targets can provide great support for feature extraction, and target categorization and recognition. Based on three L-shaped antenna interferometric imaging principle, an interferometric method for 3D imaging of space rotating targets in wideband radar is proposed. The imaging features of space rotating targets on range-slow-time plane is analyzed when radar transmits linear frequency modulation (LFM) signals. An interferometric-processing based 3D imaging model for space rotating targets is then established. Considering the echoes of different scatters will overlap on range-slow-time plane in the model proposed, some specific issues such as echo curve separation, overlapped point disposition and the effect of high resolution range profile sidelobe on imaging are discussed, and the corresponding solutions are put forward. Generally, the method has the advantage of obtaining the real 3D position of target scatters over monostatic radar-based imaging methods, thus avoiding the difficulty in joint processing multistatic radar-based imaging methods. Simulation results verify the effectiveness of the proposed 3D imaging method.

Cite this article

SUN Yuxue , LUO Ying , ZHANG Qun , LIN Yongzhao , CHEN Chunhui . Interferometric 3D imaging for space rotating targets in wideband radar[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(4) : 320399 -320399 . DOI: 10.7527/S1000-6893.2016.0286

References

[1] SURESH P, THAYAPARAN T, OBULESU T, et al. Extracting micro-doppler radar signatures from rotating targets using fourier-bessel transform and time-frequency analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6):3204-3210.
[2] LUO Y, ZHANG Q, YUAN N, et al. Three-dimensional precession feature extraction of space targets[J]. IEEE Transactions on Aerospace and Electronic System, 2014, 50(2):1313-1329.
[3] 肖金国, 杜兰, 韩勋, 等. 基于参数化时频分析的进动锥裙目标瞬时微多普勒频率提取方法[J]. 电子与信息学报, 2016, 38(1):90-96. XIAO J G, DU L, HAN X, et al. Micro-Doppler frequency extraction for cone-skirt shaped target with precession based on parameterized time-frequency analysis[J]. Journal of Electronics and Information Technology, 2016, 38(1):90-96 (in Chinese).
[4] 毕严先, 魏少明, 王俊, 等. 基于最小二乘估计的InISAR空间目标三维成像方法[J]. 电子与信息学报, 2016, 38(5):1079-1084. BI Y X, WEI S M, WANG J, et al. Interferometric ISAR imaging for 3-D geometry of uniformly rotating targets based on least squares estimation method[J]. Journal of Electronics & Information Technology, 2016, 38(5):1079-1084 (in Chinese).
[5] 尹建凤, 李道京, 王爱明, 等. 基于星载毫米波顺规-交轨InISAR的空间运动目标三维成像技术研究[J]. 宇航学报, 2013, 34(2):237-245. YIN J F, LI D J, WANG A M, et al. Three-dimensional imaging technique of space moving space target based on spaceborne along-cross track millimeter-wave In-ISAR[J]. Journal of Astronautics, 2013, 34(2):237-245 (in Chinese).
[6] 付耀文, 李亚楠, 黎湘. 基于MFT的非匀速转动目标干涉ISAR三维成像方法[J]. 宇航学报, 2012, 33(6):769-775. FU Y W, LI Y N, LI X. A 3-D InISAR imaging method for non-uniformly rotating target based on match Fourier transform[J]. Journal of Astronautics, 2012, 33(6):769-775 (in Chinese).
[7] 陈永安, 罗迎, 王恺, 等. 多天线干涉处理的窄带雷达空间旋转目标三维成像[J]. 空军工程大学学报(自然科学版), 2016, 17(4):46-51. CHEN Y A, LUO Y, WANG K, et al. Three dimensional imaging for space target based on multi-antenna interferometric processing[J]. Journal of Air Force Engineering University(Natural Science Edition), 2016, 17(4):46-51 (in Chinese).
[8] XING M, WANG Q, WANG G, et al. A matched-filter-bank-based 3-D imaging algorithm for rapidly spinning targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7):2106-2113.
[9] BAI X R, XING M D, ZHOU F, et al. High-resolution three-dimensional imaging of spinning space debris[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4):2352-2362.
[10] BAI X R, XING M D, ZHOU F, et al. Scaling the 3-D image of spinning space debris via bistatic inverse synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(3):430-434.
[11] 邹小海, 艾小锋, 李永祯, 等. 自旋尾翼弹头的双基地微多普勒研究[J]. 电子与信息学报, 2012, 34(9):2122-2127. ZOU X H, AI X F, LI Y Z, et al. Bistatic Micro-Doppler of the Spinning Warhead with Fins[J]. Journal of Electronics and Information Technology, 2012, 34(9):2122-2127 (in Chinese).
[12] AI X F, HUANG Y, ZHAO F, et al. Imaging of spinning targets via narrow-band T/R-R bistatic radars[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2):362-366.
[13] CHEN Q Q, XU G, ZHANG L, et al. Three-dimensional interferometric inverse synthetic aperture radar imaging with limited pulses by exploiting joint sparsity[J]. IET Radar Sonar Navigation, 2015, 9(6):692-701.
[14] MAHDI N, MOHAMMAD H B. A novel model for three-dimensional imaging using interferometric ISAR in any curved target flight path[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6):3236-3245.
[15] TIAN B, ZOU J W, XU S Y, et al. Squint model interferometric ISAR imaging based on respective reference range selection and squint iteration improvement[J]. IET Radar Sonar Navigation, 2015, 9(9):1366-1375.
[16] 张群, 罗迎. 雷达目标微多普勒效应[M]. 北京:国防工业出版社, 2013:3-42. ZHANG Q, LUO Y. Micro-doppler effect of radar targets[M]. Beijing:National Defense Industry Press, 2013:3-42 (in Chinese).
[17] 罗迎, 柏又青, 张群, 等. 弹道目标平动补偿与微多普勒特征提取方法[J]. 电子与信息学报, 2012, 34(3):602-608. LUO Y, BAI Y Q, ZHANG Q, et al. Translation motion compensation and micro-Doppler feature extraction of ballistic targets[J]. Journal of Electronics and Information Technology, 2012, 34(3):602-608 (in Chinese).
[18] 贺思三, 赵会宁, 张永顺. 基于延迟共轭相乘的弹道目标平动补偿[J]. 雷达学报, 2014, 3(5):505-510. HE S S, ZHAO H N, ZHANG Y S. Translational motion compensation for ballistic targets based on delayed conjugated multiplication[J]. Journal of Radars, 2014, 3(5):505-510 (in Chinese).
[19] 杨有春, 童宁宁, 冯存前, 等. 弹道目标中端平动补偿与微多普勒提取[J]. 宇航学报, 2011, 32(10):2235-2241. YANG Y C, TONG N N, FENF C Q, et al. Translation compensation and micro-doppler extraction of ballistic targets in midcourse[J]. Journal of Astronautics, 2011, 32(10):2235-2241 (in Chinese).
[20] 黄大荣, 郭新荣, 张磊, 等. 稀疏孔径ISAR机动目标成像与相位补偿方法[J]. 航空学报, 2014, 35(7):2019-2030. HUANG D R, GUO X R, ZHANG L, et al. ISAR phase compensation and imaging of maneuvering target with sparse apertures[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):2019-2030 (in Chinese).
[21] GONZALEZ R C, WOODS R E. Digital image processing[M]. 2nd ed. Upper Saddle River, NJ:Prentice-Hall, 2002:543-544.
[22] ZHANG Q, YEO T S, TAN H S, et al. Imaging of a moving target with rotating parts based on the Hough transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):291-299.

Outlines

/